6. Exercises for the Course "Complexity and Logic"

Exercise 24:

Prove the space compression theorem (Theorem 3.8 from the lecture): for all $\varepsilon \in \mathbb{R}^+$ and all $S : \mathbb{N} \to \mathbb{R}^+$, we have $\mathsf{DSpace}(S) \subseteq \mathsf{DSpace}(\mathsf{max}(n, \varepsilon \cdot S(n)))$.

Exercise 25:

Complete the proof of Lemma 3.10 from the lecture: let S, M, and X be as in the proof sketch given in the lecture. Show that, for words $w \in \Sigma^* \setminus X$, the question " $w \in L(M)$?" can be decided by simulating M using only space S(|w|).

Exercise 26:

Prove Theorem 3.12 from the lecture, i.e., the gap theorem for time: for every total computable function g with $g(n) \ge n$, there is a total computable function T with $DTime(T) = DTime(g \circ T)$.