Nöthnitzer Str. 46 01187 Dresden Tel.: 0351/463–38237 Tel.: 0351/463–39171

7. Exercises for the Course "Complexity and Logic"

Exercise 27:

Prove the following:

- (a) The functions 2n and n^2 are time constructible.
- (b) The functions 2^n and n! are space constructible.
- (c) If the functions f and g are space constructible, then so are f + g, $f \cdot g$, and 2^{f} .

Exercise 28:

Complete the proof of Theorem 3.24 by showing how a Turing machine can construct the computation graph G[M, T(n)] in time $2^{\mathcal{O}(T(n))}$ if T is space constructible and satisfies $T(n) \ge n$ for all $n \in \mathbb{N}$.

Exercise 29:

In the lecture, it was explained that non-deterministic transitions of a Turing machines can be thought of as "guessing". For example, a word $u \in \Sigma^m$ can be guessed by m consecutive transitions, each one non-deterministically producing a symbol from Σ on the tape.

Consider NTMs N that are O(n)-time bounded. Can such NTMs perform the following when started on an input of length n?

- (a) guess a natural number between 0 and n;
- (b) guess a natural number between 0 and 2^n ;
- (c) guess a word from $\{a, b\}^*$ of length 2^n ;
- (d) guess a rational number between 0 and n;
- (e) guess a word from \mathbb{N}^* of length n.

Exercise 30:

Prove the following. It is allowed to use theorems from the lecture.

- (a) $\mathsf{DTime}(2^n) = \mathsf{DTime}(2^{n+1});$
- (b) $\mathsf{DTime}(2^n) \subsetneq \mathsf{DTime}(2^{3n});$
- (c) $\mathsf{NTime}(n) \subsetneq \mathsf{PSpace}$.