8. Exercises for the Course "Complexity and Logic"

Exercise 31:

Show that the following problem is in PSPACE: given a non-deterministic finite automaton (NFA) \mathcal{A} over an alphabet Σ , is $L(\mathcal{A}) = \Sigma^*$?

Hint: prove that, if $L(\mathcal{A}) \neq \Sigma^*$ and \mathcal{A} has *n* states, then there exists a word $w \in \Sigma^*$ of length at most 2^n such that $w \notin L(\mathcal{A})$. Then use this fact to give a non-deterministic algorithm whose space consumption is polynomially bounded. Finally, apply Savitch's theorem.

Exercise 32:

Prove that the following problems can be solved in polynomial time:

- given a Boolean formula φ using variables p_1, \ldots, p_k and a truth assignment $w \in \{0, 1\}^k$, check whether w is a model of φ .
- given an \mathcal{ALCF} concept C (as introduced in the lecture) and a finite interpretation \mathcal{I} , check whether $C^{\mathcal{I}} \neq \emptyset$.

Exercise 33:

An *acyclic* finite automaton (AFA) is a non-deterministic finite automaton whose transition relation is acyclic, i.e., there is no sequence a_0, \ldots, a_{n-1} of symbols and q_0, \ldots, q_n of states such that $q_0 = q_n$ and

$$q_{i+1} \in \delta(q_i, a_i)$$
 for all $i < n$.

(In other words, AFAs are exactly the non-deterministic finite automata that accept finite languages). Prove that the following problem is in NP: given AFAs \mathcal{A}_1 and \mathcal{A}_2 , does $L(\mathcal{A}_1) \not\subseteq L(\mathcal{A}_2)$ hold?

Exercise 34:

Prove Theorem 4.6 from the lecture:

- (a) $B \in P$ and $A \leq_p B$ implies $A \in P$;
- (b) $B \in NP$ and $A \leq_p B$ implies $A \in NP$;
- (c) $A \leq_p B$ and $B \leq_p C$ implies $A \leq_p C$.