9. Exercises for the Course "Complexity and Logic"

Exercise 35:

An *n*-time bounded NTM is a non-deterministic Turing machine that, on input w, makes at most |w| steps. Prove that the following problem is NP-complete: given an *n*-time bounded NTM M and an input w, decide whether M accepts w.

Exercise 36:

Complete the 3rd step in the proof of Theorem 4.11 by proving that, if a formula ψ_1 is transformed into a formula ψ_2 in this step, then ψ_1 is satisfiable iff ψ_2 is satisfiable. Also show that these two formulas are not equivalent.

Exercise 37:

Let φ be a 3-formula. An \neq -assignment to the variables in φ is one where each clause contains two literals with unequal truth values. In other words, a \neq -assignment satisfies φ without assigning three true literals in any clause. Let \neq 3SAT be the set of 3-formulas that have an \neq -assignment. Show that \neq 3SAT is NP-complete.

Hint: use a reduction from 3SAT that translates every 3SAT clause into two \neq 3SAT clauses. Showing the correctness of the translation is likely to involve showing the following: the negation of a \neq -assignment satisfying a formula φ is also a \neq -assignment that satisfies φ .

Exercise 38:

Prove that 2-colorability is in P.

Exercise 39:

Complete the proof of Theorem 4.17 from the lecture: show that a mapping $h: V_1 \to V_2$ is a homomorphism from G_1 to G_2 if and only if h is a homomorphism from \widehat{G}_1 to \widehat{G}_2 .

Exercise 40:

Complete the proof of Theorem 4.19 from the lecture: show that the containment of conjunctive queries can be polynomially reduced to conjunctive query answering.