Nöthnitzer Str. 46 01187 Dresden Tel.: 0351/463-38237 Tel.: 0351/463-39171

10. Exercises for the Course "Complexity and Logic"

Exercise 41:

Complete the proof of Theorem 4.20 from the lecture: show that there exists a homomorphism $h: G_1 \to G_2$ with $h(u_0) = v_0$ iff x_1 is an answer for K w.r.t. \mathcal{I} .

Exercise 42:

Show that, if P = NP, then there exists a polynomial time algorithm that, given a formula φ of propositional logic, produces a satisfying assignment for φ (if φ is satisfiable).

Exercise 43:

Which of the following QBFs is valid?

- (a) $\forall p_1 \exists p_2 \forall p_3 (p_2 \rightarrow (p_1 \lor p_3))$
- (b) $\forall p_1 \exists p_2 \forall p_3 ((p_1 \lor p_2) \to p_3)$
- (c) $\forall p_1 \forall p_2 \forall p_3 \exists q_1 \exists q_2(q_1 \leftrightarrow ((p_1 \lor p_2) \land (\neg p_1 \lor \neg p_2)) \land (q_2 \leftrightarrow ((q_1 \lor p_3) \land (\neg q_1 \lor \neg p_3)))$

Exercise 44:

NICHT WEGLASSEN, SONST NAECHSTE AUFGABE BLOED. Let $\psi = Q_1 p_1 \dots Q_n p_n \varphi$ be a QBF. A witness tree for ψ is a labelled tree $T = (V, E, \ell)$ such that

- $\ell: V \to \{0, 1\}$ is a node labelling function;
- if $v \in V$ is on level i < n of T (the root is on level 0), then v has 1 successor if $Q_{i+1} = \exists$ and 2 successors if $Q_{i+1} = \forall$;
- if $v \in V$ is on level *n* of *T* and the path from the root to *v* is v_0, \ldots, v_n , then *v* has no successors and the following mapping is a truth assignment that makes φ true:

$$\tau(p_i) := \ell(v_i) \text{ for } 1 \le i \le n$$

Prove that a QBF ψ is valid iff there exists a witness tree T for ψ .

Exercise 45:

Prove Lemma 5.11 from the lecture:

- The QBF ψ is valid iff C_{ψ} is satisfiable;
- C_{ψ} can be constructed in polynomial time from ψ .

Exercise 46:

Formulas of $FO^{=}$, the first-order logic of equality, are inductively defined as follows:

- If u and v are variables, then (u = v) is a formula;
- if φ and ψ are formulas and u is a variable, then the following are also formulas $\neg \varphi, \varphi \land \psi, \varphi \lor \psi, \exists u.\varphi$, and $\forall u.\varphi$.

A $FO^{=}$ formula is a *sentence* if it does not have free variables. The semantics is defined as usual in first-order logic with equality. Note that models consist only of a universe (of arbitrary, but non-zero cardinality) since there are no function symbols and no uninterpreted predicate symbols in the syntax.

The first-order theory of equality is the set of all $FO^{=}$ sentences that are valid. Show by a QBF reduction that the first-order theory of equality is PSPACE-hard.