Institut für Theoretische Informatik, TU Dresden Prof. Dr. F. Baader

4. Exercises for the Course 'Description Logics'

Exercise 12:

Let \mathcal{I} , \mathcal{J} be interpretations such that $\Delta^{\mathcal{I}} \cap \Delta^{\mathcal{J}} = \emptyset$. The *disjoint union* $\mathcal{I} \oplus \mathcal{J}$ of \mathcal{I} and \mathcal{J} is the interpretation defined as follows:

- $\Delta^{\mathcal{I}\oplus\mathcal{J}} := \Delta^{\mathcal{I}} \uplus \Delta^{\mathcal{J}};$
- $A^{\mathcal{I} \oplus \mathcal{J}} := A^{\mathcal{I}} \uplus A^{\mathcal{J}}$ for all concept names A;
- $r^{\mathcal{I} \oplus \mathcal{J}} := r^{\mathcal{I}} \uplus r^{\mathcal{J}}$ for all role names r.

Let \mathcal{T} be a general TBox. Show that the set of models of \mathcal{T} is *closed under disjoint unions*, i.e., if \mathcal{I} and \mathcal{J} are models of \mathcal{T} with $\Delta^{\mathcal{I}} \cap \Delta^{\mathcal{J}} = \emptyset$, then $\mathcal{I} \oplus \mathcal{J}$ is a model of \mathcal{T} . Hint: for the next two exercises, you might want to use disjoint unions.

Exercise 13:

Prove or disprove the following (for the description logic \mathcal{ALC}):

- (a) There is a TBox that has no models at all.
- (b) There is an ABox that has only finite models.
- (c) Every TBox has either no models at all or infinitely many models.
- (d) There is an ABox \mathcal{A} such that all models are either infinite or contain a cycle (when viewed as a graph).
- (e) For every TBox \mathcal{T} , there is an equivalent TBox \mathcal{T}' that contains only a single GCI (where two TBoxes are equivalent if they have the same models).

Exercise 14:

Revisit the procedure for expanding TBoxes given in the proof of Proposition 2.9. Prove that

- (a) this procedure always terminates, and
- (b) that it returns a TBox that is equivalent to its input.

Hint for proving termination: count, for each concept name A, the number of concept names (directly or indirectly) used in the definition of A.

Exercise 15:

Which of the following statements are true? Give reasons.

(a)	$\forall r.(A \sqcap B)$	$\forall r.A \sqcap \forall r.B$	(e)	$\exists r.(A \sqcap B)$	\Box	$\exists r.A \sqcap \exists r.B$
(b)	$\forall r.A \sqcap \forall r.B$	$\forall r.(A \sqcap B)$	(f)	$\exists r.A \sqcap \exists r.B$		$\exists r.(A \sqcap B)$
(c)	$\forall r.(A \sqcup B)$	$\forall r.A \sqcup \forall r.B$	(h)	$\exists r.(A \sqcup B)$		$\exists r.A \sqcup \exists r.B$
(d)	$\forall r.A \sqcup \forall r.B$	$\forall r.(A \sqcup B)$	(g)	$\exists r.A \sqcup \exists r.B$		$\exists r.(A \sqcup B)$

Exercise 16:

Let $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ be a consistent knowledge base. We write $C \sqsubseteq_{\mathcal{K}} D$ if $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ for all models \mathcal{I} of \mathcal{K} . Prove that for all \mathcal{ALC} -concepts C and D, we have $C \sqsubseteq_{\mathcal{K}} D$ iff $C \sqsubseteq_{\mathcal{I}} D$.

Hint: Use disjoint unions.