9. Exercises for the Course 'Description Logics'

Exercise 35:

Let $\mathcal{K} = (\mathcal{A}_0, \mathcal{T})$ be an \mathcal{ALC} -knowledge base, with \mathcal{T} a general TBox. The *precompletion* of \mathcal{K} is the set of ABoxes \mathcal{M} that is produced by the tableau algorithm when starting with the set of ABoxes $\{\mathcal{A}_0\}$ and exhaustingly applying all rules except the \exists -rule. Do the following:

(a) Show that \mathcal{K} is consistent iff there is an open $\mathcal{A} \in \mathcal{M}$ such that for all individual names *a* occurring in \mathcal{A} , the concept $C^a_{\mathcal{A}} := \bigcap_{C(a) \in \mathcal{A}} C$ is satisfiable w.r.t. \mathcal{T} .

Hint: For the "if" direction, proceed as follows. The correctness of the tableau algorithm for \mathcal{ALC} implies that, if $C^a_{\mathcal{A}}$ is satisfiable, then exhaustively applying (all!) rules to the set of ABoxes $\{\{C^a_{\mathcal{A}}(a)\}\}$ yields a set \mathcal{M}' that contains an open and complete ABox. Show how to join all these ABoxes to obtain an open and complete tableau for \mathcal{A} and conclude that \mathcal{A}_0 is consistent w.r.t. \mathcal{T} .

(b) Use the result from (a) to prove that ABox consistency in \mathcal{ALC} can be decided in deterministic exponential time (EXPTIME).

Exercise 36:

Reconsider the claim: for all $D \in S_{C,\mathcal{T}}$ we have $D \in R(u) \Rightarrow u \in D^{\mathcal{I}_R}$. Show the claim by induction on the structure of D for the missing cases:

- $D = D_1 \sqcap D_2$ and
- $D = \exists r.E.$

Exercise 37:

Show that the transformation of \mathcal{FL}_0 -concept descriptions into normal form requires only polynomial time.

Exercise 38:

Show that subsumption in \mathcal{FL}_0 w.r.t. acyclic TBoxes is in co-NP by giving a polytime reduction from this problem to the inclusion problem for acyclic finite automata (which is in co-NP).