Nöthnitzer Str. 46 01187 Dresden Tel.: 0351/463-39167

12. Exercises for the Course 'Description Logics'

Exercise 42:

If \mathcal{D} is a concrete domain, we use $\mathcal{ALC}(\mathcal{D})$ to denote the extension of \mathcal{ALC} with the concrete domain \mathcal{D} . Show the following:

- (a) If f is an abstract feature, then $\exists f.C$ is equivalent to $\exists f.\top \sqcap \forall f.C$.
- (b) Let \mathcal{D} be a concrete domain with only unary predicates. Let $\mathcal{ALC}(\mathcal{D})^-$ be obtained from $\mathcal{ALC}(\mathcal{D})$ by allowing only concrete features instead of feature chains inside the concrete domain restictions. Prove that for every $\mathcal{ALC}(\mathcal{D})$ -concept, there is an equivalent $\mathcal{ALC}(\mathcal{D})^-$ -concept.
- (c) Let \mathcal{N} be the concrete domain introduced in Section 6.1 in the lecture. Define a new concept constructor $\forall u_1, \ldots, u_n.P$, where u_1, \ldots, u_n are feature chains and P is an *n*-ary predicate, and with the following semantics:
 - $(\forall u_1, \dots, u_n.P)^{\mathcal{I}} := \\ \{ d \in \Delta^{\mathcal{I}} \mid \forall x_1, \dots, x_n \in \Delta^{\mathcal{N}} : u_i^{\mathcal{I}}(d) = x_i \text{ for all } i \in \{1, \dots, n\} \text{ implies } (x_1, \dots, x_n) \in P^{\mathcal{N}} \}.$

Prove that the new constructor can be expressed in $\mathcal{ALC}(\mathcal{N})$, i.e., that there is an $\mathcal{ALC}(\mathcal{N})$ -concept that is equivalent to $\forall u_1, \ldots, u_n$. P, for all feature chains u_1, \ldots, u_n and all predicates $P \in \Phi^{\mathcal{N}}$.