Assignment 2

- 1. Recall the definition of a reduction order.
 - (a) An order on terms (atoms, clauses) is a **rewrite order** if it is a monotonic and closed under substitutions.
 - (b) An order on terms (atoms, clauses) is a **reduction order** if it is a well-founded rewrite order.

Prove that a reduction order total on ground literals satisfies the property: for each literal A, $\neg A \succ A$.

2. Recall the definition of a lexicographic path order.

Let Σ be a finite signature and > a strict order on Σ . The **lexicographic path order** $>_{lpo}$ on terms (or literals) induced by > is defined as follows: $s >_{lpo} t$ iff

(a)
$$t \in Var(s)$$
 and $s \neq t$,
(b) $a = f(a, \dots, a)$ $t = a(t, \dots, t)$ and

(b)
$$s = f(s_1, \ldots, s_m), t = g(t_1, \ldots, t_n)$$
 and

- i. there is $i, 1 \leq i \leq m$, such that $s_i \geq_{lpo} t$ or
- ii. f > g and $s >_{lpo} t_j$, for all $j, 1 \le j \le n$ or
- iii. f = g, there is $i, 1 \le i \le m$, such that $s_1 = t_1, \ldots, s_{i-1} = t_{i-1}$ and $s_i >_{lpo} t_i$ and $s >_{lpo} t_j$ for all $j, i < j \le n$,

Assume that a first order signature contains only connectives (\land, \neg) , finitely many functions and predicate symbols. How to define a total order on the signature in such a way that

a lexicographic order on ground clauses induced by this total order on a signature is an admissible order.