Assignment 3

1. Prove the following statement: If a unification problem G is solvable, then it has an idempotent most general unifier.

HINT:

(a) Show that for each unifiable G, it can be transformed into a unification problem in a solved form, in such a way, that this transformation preserves the set of unifiers of G.

G is in a solved form if $G = \{x_1 = ?t_1, \ldots, x_n = ?t_n\}$, where x_1, \ldots, x_n are pairwise different variables and no x_i appears in t_1, \ldots, t_n .

(b) If G is in a normal form, we define $\overrightarrow{G} := \{x_1 \mapsto t_1, \dots, x_n \mapsto t_n\}$ Show that:

i. for each unifier of $G, \overrightarrow{G} \sigma = \sigma$,

- ii. $\overrightarrow{G}\overrightarrow{G}=\overrightarrow{G}$
- 2. Prove Lemma 2.2 for ordered resolution \mathcal{O} : Let N be a set of ground clauses saturated with inferences from \mathcal{O} , such that $[] \notin N$. Let I_N be a Herbrand interpretation constructed as in Definition 3.1. Then $I_N \not\models C$ implies that $I_C \not\models C$.