Chapter 2 A Basic Description Logic

A [_‘,C attributive language with complement

Naming scheme:
e basic language AL
e extended with contructors whose “letter” is added after the AL

e ( stands for complement, i.e., ALC is obatined from AL by adding the
complement (—) operator
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Description logic system structure

TBox 2.9 \ 2.4
defines the terminology of

description the application domain reasoning

language component

e constructors for
building complex ABox 2.3 e derive implicitly
concepts out of states facts about a respresented knpwledge
atomic concepts specific “world” (e.g., subsumption)
and roles . — .
e “practical” algorithms
e formal, logic-based
semantics knowledge base
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2.1. The description Ianguage syntax and semantics of ALC

Definition 2.1 (Syntax of ALC)

Let N and Nj be disjoint sets of concept names and role names, respectively.

ALC-concept descriptions are defined by induction:
e If A € N¢,then A is an ALC-concept description.

o If C, D are ALC-concept descriptions, and r € Np,
then the following are ALC-concept descriptions:

— C'T1D (conjunction)

— (U D (disjunction)

- . Abbreviations:

— =’ (negation

( g ) - T =AU-A4A (tOp)

— Vr.C' (value restriction) — 1 :=AM-A (bottom)

— dr.C' (existential restriction) —~ C = D :=-CUlD (implication)
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Notation (use and abuse):
e concept names are called atomic
e all other descriptions are called complex

e instead of ALC-concept description we often say ALC-concept or con-
cept description or concept

e A. B often used for concept names, C', D for complex concept descrip-
tions, 7, s for role names
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The dESCriptiOn Ianguage examples of ALC-concept descriptions

Person 'l Female

Participant 1 Jattends.Talk
Participant 1 Vattends. (Talk I —Boring)
Speaker M dgives.(Talk M Ytopic.DL)

Speaker M Vgives.(Talk M Jtopic.(DL U FuzzyLogic))
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Definition 2.2 (Semantics of ALC)

An interpretation Z = (AI I ) consists of a non-empty domain AT
and an extension mapping L.

o AT C AT forall A€ N, concepts interpreted as sets

o L C AT x AT forallr € Np. roles interpreted as binary relations

The extension mapping is extended to complex ALC-concept descriptions as follows:
o (CNDY!=CTNnD?*
o (CUD) =CctuD?
o (-O)Y =AT\C?
o (Vr.C):={de AT |foralle € AT : (d,e) € r implies e € C7}

o (3r.C)f :={de AT |thereise € AT : (d,e) € ' ande € C*}
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Example of an interpretation

Person Person Person
. @ Male Male Female
gives
gives gives gives

Onk O Tuk () Talk () Tk

toplcl \tOpIC topic topic ( topic
topic opic

(O FL QDL Ome (O wma

Person M Jgives.(Talk M Vtopic.DL)

Person 1 Vgives.(Talk M Jtopic.DL)

Dresden
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Relationship with First-Order Logic

ALC can be seen as a fragment of first-order logic:
e (Concept names are unary predicates, and role names are binary predicates.

e Interpretations for ALC can then obviously be viewed as first-order interpreta-
tions for this signature.

e Concept descriptions correspond to first-order formulae with one free variable.

e Given such a formula ¢(x) with the free variable x and an interpretation Z, the
extension of ¢ w.r.t. Z is given by

oF ={de A |T | o(d)}

e Goal: translate ALC-concepts C into first-order formulae 7,(C') such that their
extensions coincide.

Dresden © Franz Baader



‘ Relationship with First-Order Logic I

Concept description C' translated into formula with one free variable 7,.(C'):
o 7.(A):=A(x)for A€ N¢
e 7,(CMD):=1,(C)AT(D)
e 7.(CUD):=1,(C)V1(D)
o 7,(=C) :=7(C)
o 7,(Vr.C):=Vy.(r(z,y) — 7,(C))

y variable different from x

o 7.(In.C) = Jy.(r(z,y) A7,(C))

m(Vr. (AN 3r.B)) = Vy.(r(z,y) = 7,(AN3Ir.B))

= Vy.(r(z,y) = (Aly) A Fz.(r(y, 2) A B(z))))
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Relationship with First-order Logic

Concept description C' translated into formula with one free variable 7,.(C'):

o 7.(A):=A(x)for A€ N¢

o 7.(CTD):=71,(C)ANT1.(D)

e 7,(CUD):=7,(C)V1(D)

o 7,(=C):=-7,(C)

o 7,(Vr.C):=Vy.(r(z,y) — 7,(C))

y variable different from x

o 7.(In.C) = Jy.(r(z,y) A7,(C))

Lemma 2.3

Dresden

C' and 7,(C') have the same extension, i.e.,

O = {de AT | T | 7,(0)(d)}

Proof: induction on
the structure of C
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Relationship with First-Order Logic

ALC can be seen as a fragment of first-order logic:
e Concept names are unary predicates, and role names are binary predicates.

e Concept descriptions C' yield formulae with one free variable 7,.(C').

These formulae belong to known decidable subclasses of first-order logic:

— two-variable fragment

— guarded fragment

m.(Vr. (A 3Ir.B)) = Vy.(r(z,y) — 7,(AM3Ir.B))

= Vy.(r(z,y) — (A(y) A 3z.(r(y, 2) A B(x))))
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Relationship with Modal Logic

multimodal K:

ALC is a syntactic variant of the basic modal logic K: several pairs of

boxes and diamonds

e Concept names are propositional variables,

and role names are names for transition relations.

e Concept descriptions C' yield modal formulae 6(C'):
— 0(A) :=afor A e N¢

- 60(CND):=60(C)NB(D)

- 0(CUD):=6(C)VeD)

- 0(=C) =-6(C)
(Vr.C) == 0,0(C)
(3r.C) == 0,6(C)

|
>

— 0

C and 6(C) have the same semantics: C7 is the set of worlds that make 0(C)
true in the Kripke structure described by Z.
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Additional constructors

ALC is only an example of a description logic.

DL researchers have introduced and investigated many additional constructors.

Example letter Q in the naming scheme

Qualified number restrictions: (>nr.C'), (<nr.C') with semantics
(>nr.0)Yr = {deA?|card({e|(d,e) €t Ne € C*}) > n}
(<nr.CY = {de A?|card({e]| (d,e) €t ANe € C*}) < n}

Persons that attend at most 20 talks, of which at least 3 have the topic DL:

Person M (< 20 attends.Talk) M (> 3 attends. (Talk M Jtopic.DL))
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Additional constructors

ALC is only an example of a description logic.

DL researchers have introduced and investigated many additional constructors.

Example letter Q in the naming scheme

Qualified number restrictions: (>nr.C'), (<nr.C') with semantics
(>nr.0)Yr = {deA?|card({e|(d,e) €t Ne € C*}) > n}
(<nr.CY = {de A?|card({e]| (d,e) €t ANe € C*}) < n}

Number restrictions: (>nr), (<nr)asabbreviation for (>nr.T)and (<nr.T):

(>nryt = {de A’ |card({e| (d,e) € r*}) > n}

(<nr)t = {de Al |card({e]| (d,e) € r'}) < n}
letter V in the naming scheme
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Additional constructors

In addition to concept constructors, one can also introduce role constructors.

Example letter Z in the naming scheme

Inverse roles: if r is a role, then ! denotes its inverse

(rH% = {(e,d) | (d,e) € '}

Inverse roles can be used like role names in value and existential restrictions.

Presenter of a boring talk:

Speaker M Jgives. (Talk M Vattends *.(Bored LI Sleeping))
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Description logic system structure

TBox 2.9 \ 2.4
defines the terminology of

description the application domain reasoning

language component

e constructors for
building complex ABox 2.3 e derive implicitly
concepts out of states facts about a respresented knpwledge
atomic concepts specific “world” (e.g., subsumption)
and roles . — .
e “practical” algorithms
e formal, logic-based
semantics knowledge base
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2.2. Termi nOlOgiCal kﬂOWledge GClIs, TBoxes, and concept definitions

Definition 2.4 (GCIs and TBoxes)

e A general concept inclusion is of the form C' C D
where C, D are concept descriptions.

e A TBox is a finite set of GCls.

e The interpretation Z is a model of the TBox 7 iff
it satisfies all the GCIs in 7.

e The interpretation Z satisfies the GCI C' C D iff C* C D”.

Note: this definition is not specific for ALC.

It applies also to other concept description languages.

Dresden

© Franz Baader



2.2. Termi nOlOgiCal kﬂOWledge GClIs, TBoxes, and concept definitions

Definition 2.4 (GCIs and TBoxes)

e A general concept inclusion is of the form C' C D
where C, D are concept descriptions.

e A TBox is a finite set of GCls.
e The interpretation Z satisfies the GCI C' C D iff C* C D”.

e The interpretation Z is a model of the TBox 7 iff
it satisfies all the GCIs in 7.

Talk 1 Vattends *.Sleeping C Boring

Author M PCchair C L
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2.2. Termi nOlOgiCal kﬂOWledge GClIs, TBoxes, and concept definitions

Definition 2.4 (GCIs and TBoxes)

e A general concept inclusion is of the form C' C D
where C, D are concept descriptions.

e A TBox is a finite set of GCls.
e The interpretation Z satisfies the GCI C' C D iff C* C D”.

e The interpretation Z is a model of the TBox 7 iff
it satisfies all the GCIs in 7.

Notation: two TBoxes are called equivalent if they have the same models
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Restricted TBoxes concept definitions and acyclic TBoxes

Definition 2.5

A concept definition is of the form A = (' where
e A isa concept name;

e (is a concept description.

The interpretation Z satisfies the concept definition A = C'iff AT = CZ.

T

abbreviation for the two GClIs
ACCandC C A

Dresden
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Restricted TBoxes concept definitions and acyclic TBoxes

Definition 2.5 (continued)

multiple definition

An acyclic TBox is a finite set of concept definitions that % for C'# D

e does not contain multiple definitions;

e does not contain cyclic definitions.

cyclic definition

No cyclic definitions:
there is no sequence A, = C',... A, = C,, € T (n > 1) such that

e A, joccursinC; (1 <7< n)

e A occursin C),
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Restricted TBoxes concept definitions and acyclic TBoxes

Definition 2.5 (continued)

An acyclic TBox is a finite set of concept definitions that
e does not contain multiple definitions;

e does not contain cyclic definitions.

The interpretation Z is a model of the acyclic TBox 7 iff it satisfies all
its concept definitions: AZ = C* foral A=C €T

Given an acyclic TBox, we call a concept name A occurring in 7" a

e defined concept iff there is C' such that A = C € 7

e primitive concept otherwise.
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Example

of an acyclic TBox

Woman
Man

Talk
Speaker
Participant

BusySpeaker

BadSpeaker

Person 1 Female
Person [ =Female
dtopic. T

Person M dgives.Talk
Person M dattends.Talk

Speaker M (> 3 gives.Talk)

Speaker M Vgives. (Vattends ™ *.(Bored LI Sleeping))
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ACyC“C TBoxes an important result

Proposition 2.6

For every acyclic TBox 7 we can effectively construct an equivalent acyclic

TBox 7 such that the right-hand sides of concept definitions in 7 contain
only primitive concepts.

Proof: blackboard
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ACyC“C TBoxes an important result

Proposition 2.6

For every acyclic TBox 7 we can effectively construct an equivalent acyclic

TBox 7 such that the right-hand sides of concept definitions in 7 contain
only primitive concepts.

We call 7 the expanded version of 7 .
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ACyC“C TBoxes an important result

Given an acyclic TBox 7, a primitive interpretation 7 for 7 consists of a nonempty
set A7 together with an extension mapping -7, that maps

e primitive concepts P to sets P7 C AY
e role names 7 to binary relations 7/ C A7 x A7

The interpretation Z is an extension of the primitive interpretation 7 iff

A7 = AT and
e P7 = P for all primitive concepts P
e 7 = rZ for all role names 7

Corollary 2.7

Let 7 be an acyclic TBox.

Any primitive interpretation 7 has a unique extension to a model of 7.
Proof: blackboard
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‘ Relationship with First-Order Logic I

ALC-TBoxes can be be translated into first-order logic:

r(T)= N Va.(ru(C) — 72(D))
CCDeT

Lemma 2.8

Let 7 be a TBox and 7(7) its translation into first-order logic.
Then 7 and 7(7 ) have the same models.

Proof: blackboard

Dresden
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Description logic system structure

TBox 2.9 \ 2.4
defines the terminology of

description the application domain reasoning

language component

e constructors for
building complex ABox 2.3 e derive implicitly
concepts out of states facts about a respresented knpwledge
atomic concepts specific “world” (e.g., subsumption)
and roles . — .
e “practical” algorithms
e formal, logic-based
semantics knowledge base
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2.3. Assertional knowledge

Definition 2.9 (Assertions and ABoxes)

An assertion 1s of the form

('(a) (concept assertion) or  7(a,b) (role assertion)

where C'is a concept description, 7 is a role, and a, b are individual names
from a set /V; of such names (disjoint with N and Np).

An ABox 1s a finite set of assertions.

An interpretation Z is a model of an ABox A if it satisfies all
1ts assertions: 7 assigns elements at
at e % for all C(a) € A of AZ to individual names

(at,b*) e rt forallr(a,b) € A a € Nj
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2.3. Assertional knowledge

Dresden

Definition 2.9 (Assertions and ABoxes)

An assertion 1s of the form

('(a) (concept assertion)

where C'is a concept description, 7 is a role, and a, b are individual names

or  7r(a,b) (role assertion)

from a set /V; of such names (disjoint with N and Np).

An ABox 1s a finite set of assertions.

Lecturer(FRANZ),
Tutorial(TUO3),
DL(RinDL)

teaches(FRANZ, TU03),
topic(TUO3, RinDL),
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Relationship with First-Order Logic

ALC-ABoxes can be be translated into first-order logic:

r(A) = /\ (C)()/\ AN

Cla)eT (a,b)eT

individual names are
viewed as constants

Lemma 2.10

Let A be a TBox and 7(.A) its translation into first-order logic.
Then A and 7(.A) have the same models.

Proof: easy

Dresden
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Knowledge Bases

Definition 2.11

A knowledge base K = (7, .A) consists of a TBox 7 and an ABox \A.

The interpretation Z is a model of the knowledge base K = (7, A) iff
it is a model of 7" and a model of A.

First-order translation: 7(K) := 7(7") A 7(.A)

Lemma 2.12

Let K be a knowledge base and 7(K) its translation into first-order logic.
Then K and 7(K) have the same models.

Proof: immediate consequence of Lemma 2.8 and Lemma 2.10
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Additional constructors

Individual names can also be used as concept constructors to increase the expressive

power of the concept description language.

They yield a singleton set consisting of the extension of the individual name.

‘ Nominals I letter O in the naming scheme

Nominals: {a} for a € N; with semantics

(@} = (o)

Nominals can be used to express ABox assertions using GClIs:

C'(a) isexpressedby {a} CC

r(a,b) isexpressedby {a} C Fr.{b}

Dresden
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Description logic system structure

TBox 2.9 \ 2.4
defines the terminology of

description the application domain reasoning

language component

e constructors for
building complex ABox 2.3 e derive implicitly
concepts out of states facts about a respresented knpwledge
atomic concepts specific “world” (e.g., subsumption)
and roles . — .
e “practical” algorithms
e formal, logic-based
semantics knowledge base
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_ _ make implicitly
2.4. Reasoning Problems and Services represented
knowledge explicit

Definition 2.13 (terminological reasoning)

Let 7 be a TBox.

Satisfiability:
C'is satisfiable w.r.t. 7 iff C* +# () for some model Z of 7.

Subsumption:

C'is subsumed by D w.r.t. 7 (C' T D) iff
CT C D7 for all models Z of the TBox 7 .

Equivalence:

(' is equivalent to D w.r.t. 7 (C' =7D) iff
CT = D7 for all models Z of the TBox 7.

Dresden © Franz Baader



Terminological Reasoning

Note:

If 7 = (), then satisfiability/subsumption/equivalence w.r.t. 7 is simply called
satisfiability/subsumption/equivalence and we write L and =.

Examples:

o Al1—AandVr. AN dr.—A are not satisfiable (unsatisfiable)

ATT=Aand Vr.A 1 dr.—A are equivalent

e AT B issubsumed by A and by B.

dr.(A T B) is subsumed by Jr.A and by Jdr. B

Vr.(AT1 B) is equivalent to Vr. A [ Vr.B

e Jr ArVr.B is subsumed by dr.(A M B)
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Properties of Subsumption

LLemma 2.14

e The subsumption relation L7 is a pre-order on concept descriptions,
1.€.,

— (' Cy O (reflexive)

- CCyrDANDLCy E— C Ly E (transitive)
It is not a partial order since it is not antisymmetric:

- CCy DANDEsCAC=D

e The constructors existential restriction and value restriction are mono-
tonic w.r.t. subsumption, i.e.,

- CCy D—dr.CCrIr.DAVYr.C E7r Vr.D

Proof: blackboard
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Assertional Reasoning

Definition 2.15 (assertional reasoning)

Let K = (7, .A) be a knowledge base.

Consistency:

JC is consistent iff there exists a model of /C.

Instance:

a is an instance of C' w.r.t. I iff a* € C? for all models Z of k.

Lemma 2.16
Let £ = (7, .A) be a knowledge base.

If a is an instance of C' w.rt. L and C T4 D,

then a is an instance of D w.r.t. K. Proof: exercise

Dresden
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Reductions between reasoning problems

There are the following polynomomial time reductions between

the introduced reasoning problems:

. 3.
equivalence subsumption satisfiability
2. 4,
5.
6.
instance consistenc
! < S1stency
7.

This holds not only for ALC, but for all DLs that have

the constructors conjunction and negation.

Dresden

© Franz Baader



Dresden

Theorem 2.17

Let L = (7, .A) be a knowledge base, C', D concept descriptions, and a € Nj.

. C=7D iff CCyrDand D L+ C

2. CCy Diff C=7,CN1D

3. C Cy D iff C'1 =D isunsatisfiable w.r.t. 7
4. (' is satisfiable w.r.t. 7 iff C' L7 L

5. C'is satisfiable w.r.t. 7 iff (7, {C(a)}) is consistent

6. ais an instance of C' w.r.t. K iff (7, AU {=C(a)}) is inconsistent

7. JCis consistent iff @ is not an instance of | w.r.t. C

Proof: blackboard
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Reduction getting rid of acyclic TBoxes

Expansion of concepts and ABoxes:

Let L = (7, .A) be a knowledge base, where 7 is acyclic,
and C' a concept description.

The expanded versions C and A of C and A w.r.t. T are obtained as follows:

e replace all defined concepts occurring in C' and A by their definitions

in the expanded version T of T.

Woman = Person 1 Female
T Talk = dtopic. T
Speaker = Person 1 dgives.Talk

C' = Woman ['1 Speaker expands to

C' = Person I Female 1 Person I dgives.(Jtopic. T)
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Reduction getting rid of acyclic TBoxes

Expansion of concepts and ABoxes:

Let IC = (7, A) be a knowledge base, where 7 is acyclic,
and C' a concept description.

The expanded versions C and A of C and A w.r.t. T are obtained as follows:

e replace all defined concepts occurring in C' and A by their definitions

in the expanded version T of T.

Proposition 2.18

1. C issatisfiable w.r.t. 7 iff C/; 1s satisfiable

-~

2. K =(T,A)isconsistent iff ((),.A) is consistent

Proof: blackboard
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Reduction getting rid of acyclic TBoxes

Expansion of concepts and ABoxes:

Let L = (7, .A) be a knowledge base, where 7 is acyclic,
and C' a concept description.

The expanded versions C and A of C and A w.r.t. T are obtained as follows:

e replace all defined concepts occurring in C' and A by their definitions

in the expanded version T of T.

Proposition 2.18

1. C issatisfiable w.r.t. 7 iff Cﬁ; 1s satisfiable

-~

2. K =(T,A)isconsistent iff ((),.A) is consistent

Similar reductions exist for the other reasoning problems.
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Reduction getting rid of the TBox

This reduction is in general not polynomial,

since the expanded versions may be exponential in the size of 7.

/1[] — V'}".Al [ V:S'./ll
Al = Vr.AynvVs. Ay

A,1 = Vr.A,NVs.A,

The size of 7 is linear in n,

but the expansion version A of A\ contains A,, 2" times.

Proof: induction on n
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Relationship with First-Order Logic

Reasoning in ALC can be translated into
reasoning 1n first-order logic:

Lemma 2.19

Let K = (7,.A) be a knowledge base, C, D be ALC-concept descriptions,
and a an individual name.

1. CC7 D iff 7(7T) EVa.(r.(C)(z) — 1:(D)(x))
2. K is consistent iff 7(K) is consistent

3. ais an instance of C' w.r.t. K iff 7(K) = 7.(C)(a)

Proof: blackboard
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Computing the subsumption hierarchy of

Classification

all concept names occurring in the TBox.

Man

Person ' —=Female

Person 'l Female

Woman

MaleSpeaker Man ' dgives.Talk

FemaleSpeaker Woman Il Jgives.Talk

Speaker = FemaleSpeaker LI MaleSpeaker
BusySpeaker = Speaker 1 (> 3 gives.Talks)
Talk Person Female
Man Speaker Woman

MaleSpeaker BusySpeaker FemaleSpeaker
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Computing the most specific concept names in the TBox

Realization : o
to which an ABox individual belongs.
Man = Person[1 —Female
Woman = Person[1Female
MaleSpeaker = Man 1 dgives.Talk
FemaleSpeaker = Woman [T dgives.Talk
Speaker = FemaleSpeaker LI MaleSpeaker
BusySpeaker = Speaker M (> 3 gives.Talks)
Man(FRANZ), gives(FRANZ, T1),
Talk(T1)

FRANZ is an instance of Man, Speaker, MaleSpeaker.

Dresden

most specific
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