Chapter 3 Basic Model Theory

Interpretations of ALC can be viewed as graphs
(with labeled edges and nodes).

e We introduce the notion of bisimulation between graphs/interpretations

e We show that ALC-concepts cannot distinguish bisimular nodes

We use this to show restrictions of the expressive power of ALC

We use this to show interesting properties of models for ALC:
— tree model property

— closure under disjoint union

We show the finite model property of ALC.
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Definition 3.1 (bisimulation)

Let 7, and 7, be interpretations.

The relation p C A% x A’ is a bisimulation between Z; und Zs iff

o di pdy implies d; € AT iff dy € A% forall A € Ng

o di pdsand (dy,d;) € r’* implies the existence of d, € A% such that
" pdyand (do, d)) € r¥> forallr € Np

o d; pdsyand (dy,d,) € r*» implies the existence of d} € A’ such that
" pdyand (dy,dy) € r forallr € Np

Note:

A A

e 7, =1, is possible

e the empty relation () is

a bisimulation.
p
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Let Z, and 7> be interpretations and d, € A?', dy € A2,

(Z1,dy) ~ (To,dy)  iff there is a bisimulation p between Z; and 75
such that d;pd,

Theorem 3.2 (bisimulation invariance of ALC)

If (Zy,d,) ~ (I, ds), then the following holds for all ALC-concepts C":

d; € O iff dy € C*

“ALC-concepts cannot distinguish between d; and d>”

Proof: blackboard
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Expressive power of ALC

We have introduced extensions of ALC by the concept constructors

number restrictions, nominals and the role constructor inverse role.

How can we show that these constructors really extend ALC,

i.e., that they cannot be expressed using the constructors of ALC.

To this purpose, we show that, using any of these constructors,

we can construct concept descriptions
e that cannot be expressed by ALC-concept descriptions,

e i.e, there is no equivalent ALC-concept description.
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Expressive power of ALC

Proposition 3.3 (ALCN is more expressive than ALC)

No ALC-concept description is equivalent to

the ALCN -concept description (< 17).

Proof: blackboard
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Expressive power of ALC

Proposition 3.4 (ALCZ is more expressive than ALC)

No ALC-concept description is equivalent to

the ALCZ-concept description Ir 1. T.

Proof: blackboard
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EXxpressive power of ACC

Proposition 3.5 (ALCO is more expressive than ALC)

No ALC-concept description is equivalent to

the ALCO-concept description {a }.

Proof: blackboard
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Tree model property of ALC.

Recall that interpretations can be viewed as graphs:

e nodes are the elements of AL :

it tation of rol o1ds od model of
e interpretation of roles names yields edges;
P Y . ALC dr.B
A
e interpretation of concept names yields node labels. BLCdrA de A
AUBLC ds.T

Starting with a given node, the graph
can be unraveled into a tree without

“changing membership” in concepts.

B E ﬂr.A

AUBLC ds. T
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Definition 3.6 (tree model)

Let 7 be a TBox and C' a concept description.

The interpretation Z is a tree model of C' w.r.t. 7 iff
7 is a model of 7', and the graph

(A%, | )

T‘E."\"YR

is a tree whose root belongs to C”~.

Theorem 3.7 (tree model property)

ALC has the tree model property,

i.e.,if 7 is an ALC-TBox and C' an ALC-concept description such that
(' is satisfiable w.r.t. 7, then C' has a tree model w.r.t. 7.

Proof: blackboard
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Proposition 3.8 (no tree model property)

ALCO does not have the tree model property.

Proof:

The concept {a} does not have a tree model w.r.t. {{a} C Jr.{a}}.
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Disjoint union

Definition 3.9

Let Z; and Z, be interpretations over disjoint domains.

Their disjoint union Z; & 7 is defined as follows:

AIILHIQ — AZ U AIQ
AT — ATiy AL forall A € Ng
p19T = pLyrL forallr € Np
Lemma 3.10

For i € {1,2}, all ALC-concept descriptions C, and all d € A% we have
de Ch iff de CTYE
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Disjoint union

Definition 3.9

Let Z; and Z, be interpretations over disjoint domains.

Their disjoint union Z; & 7 is defined as follows:

AIILHIQ — AZ U AIQ
AT — ATiy AL forall A € Ng
p19T = pLyrL forallr € Np

Theorem 3.10b

Let 77 and 7, be interpretations over disjoint domains, and 7 an ALC-TBox.

If both Z; and 7> is a model of 7, then 7> W 75 is also a model of 7.

Proof: blackboard
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Finite model property

Definition 3.11 (finite model)

Let 7 be a TBox and C' a concept description.

The interpretation Z is a finite model of C' w.r.t. 7 iff
7 is amodel of 7, C% # (), and A7 is finite.

Theorem 3.12 (finite model property)

ALC has the finite model property,

i.e., if 7 is an ALC-TBox and C an ALC-concept description such that
(' is satisfiable w.r.t. 7, then C' has a finite model w.r.t. 7.

Proof first requires some definitions.

Dresden © Franz Baader



Dresden

Size of ALC-concept descriptions

o (' N¢: |Al:=1 for A € Ne;
® 0201|_|020rC:C]UCQ: |O|:1—|—‘Ol|—|—‘02

e C'=-DorC=3rDorC=VYr.D: |C|:=1+4|D|.

2

ANIr(AUB)|=14+14+(14+(14+1+1))=6

Counts the occurrences of concept names, role names, and Boolean operators.

7| = ) |C|+|D|

CCDeT
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Subdescri ptionS of ALC-concept descriptions

e ('€ No: Sub(A) :={A} for A € Ng;
o ('=C1MNCyorC =C1UCy: Sub(C) := {C}USub(Cy)USub(Cs);

e C'==DorC=dr.DorC =Vr.D: Sub(C):={C} USub(D).

Sub(AM3r.(AUB)) = {AN3Ir(AUB), A, I(AUB), AUB, B)

Sub(7T) := U Sub(C') U Sub(D)

e the cardinality of Sub(C') is bounded by |C/;

e the cardinality of Sub(7") is bounded by |7|.
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Type of an element of a model

Definition 3.13 (S-type)

Let .S be a finite set of concept descriptions, and Z an interpretation.

The S-type of d € A? is defined as
ts(d) :={C € S|deC*}.

Lemma 3.14 (number of S-types)

{ts(d) | d e AT} < 25

Proof: obvious
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FI|'[I‘a'[IOI’] of a model

Definition 3.15 (S-filtration)

Let .S be a finite set of concept descriptions, and Z an interpretation.

We define an equivalence relation ~ on A as follows:

d~e iff tg(d) =ts(e)

The ~-equivalence class of d € AZ is denote by [d].
The S-filtration of Z is the following interpretation 7 :
o AN ={[d]|de A}
o AV :={[d]|3d €[d].d € AT} forall A € N¢
o 7 :={([d],le]) | 3d’' € [d], ¢’ € [e]. (d',¢') € r’} forall r € Ng

Obviously, |A7| < 2051,
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F i I trat i O n important property

We say that the finite set S’ of concept descriptions is closed iff

U{Sub(C) | CeStCSs

LLemma 3.16

Let S be a finite set of .ALC-concept descriptions, that is closed,
7 an interpretation, and [/ the S-filtration of Z. Then we have

deCt iff [decd

foralld € ATand C € S.

Proof: blackboard
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The following proposition shows that ALC satisfies a property
that is even stronger than the finite model property.

Proposition 3.17 (bounded model property)

Let 7 be a TBox, C' a concept description, and S := Sub(C') U Sub(7).

If (' is satisfiable w.r.t. 7, then there is a model 7 of T such that
CT £ () and |Af| < 281,

Proof: let Z be a model of 7 with C7 # (), and 7 be the S-filtration of 7

We must show:

o |Af] < 2191 Lemma 3.14

ocf%@

follow from Lemma 3.16
e 7 is amodel of 7
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The following proposition shows that ALC satisfies a property
that is even stronger than the finite model property.

Proposition 3.17 (bounded model property)

Let 7 be a TBox, C' a concept description, and S := Sub(C') U Sub(7).

If (' is satisfiable w.r.t. 7, then there is a model 7 of T such that
CT £ () and |Af| < 281,

Corollary 3.17b (decidability)

In ALC, satisfiability of a concept description w.r.t. a TBox is decidable.
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‘ No finite model property I

Theorem 3.18 (no finite model property)

ALCNT does not have the finite model property,

Proof: blackboard
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