Chapter 3 ### **Basic Model Theory** Interpretations of ALC can be viewed as graphs (with labeled edges and nodes). - We introduce the notion of bisimulation between graphs/interpretations - We show that \mathcal{ALC} -concepts cannot distinguish bisimular nodes - We use this to show restrictions of the expressive power of \mathcal{ALC} - We use this to show interesting properties of models for \mathcal{ALC} : - tree model property - closure under disjoint union - We show the finite model property of ALC. ### <u>Definition 3.1</u> (bisimulation) Let \mathcal{I}_1 and \mathcal{I}_2 be interpretations. The relation $\rho \subseteq \Delta^{\mathcal{I}_1} \times \Delta^{\mathcal{I}_2}$ is a bisimulation between \mathcal{I}_1 und \mathcal{I}_2 iff - $d_1 \rho d_2$ implies $d_1 \in A^{\mathcal{I}_1}$ iff $d_2 \in A^{\mathcal{I}_2}$ for all $A \in N_C$ - $d_1 \ \rho \ d_2$ and $(d_1, d_1') \in r^{\mathcal{I}_1}$ implies the existence of $d_2' \in \Delta^{\mathcal{I}_2}$ such that $d_1' \ \rho \ d_2'$ and $(d_2, d_2') \in r^{\mathcal{I}_2}$ for all $r \in N_R$ - $d_1 \ \rho \ d_2$ and $(d_2, d_2') \in r^{\mathcal{I}_2}$ implies the existence of $d_1' \in \Delta^{\mathcal{I}_1}$ such that $d_1' \ \rho \ d_2'$ and $(d_1, d_1') \in r^{\mathcal{I}_1}$ for all $r \in N_R$ #### Note: - $\mathcal{I}_1 = \mathcal{I}_2$ is possible - the empty relation ∅ is a bisimulation. Let \mathcal{I}_1 and \mathcal{I}_2 be interpretations and $d_1 \in \Delta^{\mathcal{I}_1}$, $d_2 \in \Delta^{\mathcal{I}_2}$. $$(\mathcal{I}_1,d_1)\sim (\mathcal{I}_2,d_2)$$ iff there is a bisimulation ho between \mathcal{I}_1 and \mathcal{I}_2 such that $d_1 ho d_2$ ### Theorem 3.2 (bisimulation invariance of ALC) If $(\mathcal{I}_1, d_1) \sim (\mathcal{I}_2, d_2)$, then the following holds for all \mathcal{ALC} -concepts C: $$d_1 \in C^{\mathcal{I}_1}$$ iff $d_2 \in C^{\mathcal{I}_2}$ " \mathcal{ALC} -concepts cannot distinguish between d_1 and d_2 " of ALC We have introduced extensions of ALC by the concept constructors number restrictions, nominals and the role constructor inverse role. How can we show that these constructors really extend \mathcal{ALC} , i.e., that they cannot be expressed using the constructors of \mathcal{ALC} . To this purpose, we show that, using any of these constructors, we can construct concept descriptions - that cannot be expressed by ALC-concept descriptions, - i.e, there is no equivalent \mathcal{ALC} -concept description. of ALC Proposition 3.3 (\mathcal{ALCN} is more expressive than \mathcal{ALC}) No \mathcal{ALC} -concept description is equivalent to the \mathcal{ALCN} -concept description ($\leq 1r$). of ALC Proposition 3.4 (\mathcal{ALCI} is more expressive than \mathcal{ALC}) No \mathcal{ALC} -concept description is equivalent to the \mathcal{ALCI} -concept description $\exists r^{-1}. \top$. of ALC ### Proposition 3.5 (\mathcal{ALCO} is more expressive than \mathcal{ALC}) No \mathcal{ALC} -concept description is equivalent to the \mathcal{ALCO} -concept description $\{a\}$. # Tree model property of ALC. Recall that interpretations can be viewed as graphs: - nodes are the elements of $\Delta^{\mathcal{I}}$; - interpretation of roles names yields edges; - interpretation of concept names yields node labels. Starting with a given node, the graph can be unraveled into a tree without "changing membership" in concepts. ### <u>Definition 3.6</u> (tree model) Let \mathcal{T} be a TBox and C a concept description. The interpretation \mathcal{I} is a tree model of C w.r.t. \mathcal{T} iff \mathcal{I} is a model of \mathcal{T} , and the graph $$(\Delta^{\mathcal{I}}, \bigcup_{r \in N_R} r^{\mathcal{I}})$$ is a tree whose root belongs to $C^{\mathcal{I}}$. ### <u>Theorem 3.7</u> (tree model property) \mathcal{ALC} has the tree model property, i.e., if \mathcal{T} is an \mathcal{ALC} -TBox and C an \mathcal{ALC} -concept description such that C is satisfiable w.r.t. \mathcal{T} , then C has a tree model w.r.t. \mathcal{T} . ### Proposition 3.8 (no tree model property) \mathcal{ALCO} does **not** have the tree model property. #### Proof: The concept $\{a\}$ does not have a tree model w.r.t. $\{\{a\} \sqsubseteq \exists r.\{a\}\}\}$. # Disjoint union #### Definition 3.9 Let \mathcal{I}_1 and \mathcal{I}_2 be interpretations over disjoint domains. Their disjoint union $\mathcal{I}_1 \uplus \mathcal{I}_2$ is defined as follows: $$\begin{array}{rcl} \Delta^{\mathcal{I}_1 \uplus \mathcal{I}_2} & = & \Delta^{\mathcal{I}_1} \cup \Delta^{\mathcal{I}_2} \\ A^{\mathcal{I}_1 \uplus \mathcal{I}_2} & = & A^{\mathcal{I}_1} \cup A^{\mathcal{I}_2} \text{ for all } A \in N_C \\ r^{\mathcal{I} \uplus \mathcal{J}} & = & r^{\mathcal{I}_1} \cup r^{\mathcal{I}_2} \text{ for all } r \in N_R \end{array}$$ #### Lemma 3.10 For $i \in \{1, 2\}$, all \mathcal{ALC} -concept descriptions C, and all $\mathbf{d} \in \Delta^{\mathcal{I}_i}$ we have $$d \in C^{\mathcal{I}_i}$$ iff $d \in C^{\mathcal{I}_1 \uplus \mathcal{I}_2}$ ### Disjoint union #### Definition 3.9 Let \mathcal{I}_1 and \mathcal{I}_2 be interpretations over disjoint domains. Their disjoint union $\mathcal{I}_1 \uplus \mathcal{I}_2$ is defined as follows: $$\begin{array}{rcl} \Delta^{\mathcal{I}_1 \uplus \mathcal{I}_2} & = & \Delta^{\mathcal{I}_1} \cup \Delta^{\mathcal{I}_2} \\ A^{\mathcal{I}_1 \uplus \mathcal{I}_2} & = & A^{\mathcal{I}_1} \cup A^{\mathcal{I}_2} \text{ for all } A \in N_C \\ r^{\mathcal{I} \uplus \mathcal{J}} & = & r^{\mathcal{I}_1} \cup r^{\mathcal{I}_2} \text{ for all } r \in N_R \end{array}$$ #### Theorem 3.10b Let \mathcal{I}_1 and \mathcal{I}_2 be interpretations over disjoint domains, and \mathcal{T} an \mathcal{ALC} -TBox. If both \mathcal{I}_1 and \mathcal{I}_2 is a model of \mathcal{T} , then $\mathcal{I}_2 \uplus \mathcal{I}_2$ is also a model of \mathcal{T} . # Finite model property #### <u>Definition 3.11</u> (finite model) Let \mathcal{T} be a TBox and C a concept description. The interpretation $\mathcal I$ is a finite model of C w.r.t. $\mathcal T$ iff \mathcal{I} is a model of \mathcal{T} , $C^{\mathcal{I}} \neq \emptyset$, and $\Delta^{\mathcal{I}}$ is finite. ### <u>Theorem 3.12</u> (finite model property) ALC has the finite model property, i.e., if \mathcal{T} is an \mathcal{ALC} -TBox and C an \mathcal{ALC} -concept description such that C is satisfiable w.r.t. \mathcal{T} , then C has a finite model w.r.t. \mathcal{T} . Proof first requires some definitions. ### Size #### of ALC-concept descriptions - $C \in N_C$: |A| := 1 for $A \in N_C$; - $C = C_1 \sqcap C_2$ or $C = C_1 \sqcup C_2$: $|C| := 1 + |C_1| + |C_2|$; - $C = \neg D$ or $C = \exists r.D$ or $C = \forall r.D$: |C| := 1 + |D|. $$|A \sqcap \exists r.(A \sqcup B)| = 1 + 1 + (1 + (1 + 1 + 1)) = 6$$ Counts the occurrences of concept names, role names, and Boolean operators. $$|\mathcal{T}| := \sum_{C \sqsubseteq D \in \mathcal{T}} |C| + |D|$$ ### Subdescriptions of ALC-concept descriptions - $C \in N_C$: Sub $(A) := \{A\}$ for $A \in N_C$; - $C = C_1 \sqcap C_2$ or $C = C_1 \sqcup C_2$: $Sub(C) := \{C\} \cup Sub(C_1) \cup Sub(C_2)$; - $C = \neg D$ or $C = \exists r.D$ or $C = \forall r.D$: $Sub(C) := \{C\} \cup Sub(D)$. $$Sub(A \sqcap \exists r.(A \sqcup B)) = \{A \sqcap \exists r.(A \sqcup B), A, \exists r.(A \sqcup B), A \sqcup B, B\}$$ $$\operatorname{Sub}(\mathcal{T}) := \bigcup_{C \sqsubseteq D \in \mathcal{T}} \operatorname{Sub}(C) \cup \operatorname{Sub}(D)$$ - the cardinality of Sub(C) is bounded by |C|; - the cardinality of Sub(T) is bounded by |T|. # Type of an element of a model ### <u>Definition 3.13</u> (*S*-type) Let S be a finite set of concept descriptions, and \mathcal{I} an interpretation. The S-type of $d \in \Delta^{\mathcal{I}}$ is defined as $$t_S(d) := \{ C \in S \mid d \in C^{\mathcal{I}} \}.$$ ### Lemma 3.14 (number of S-types) $$|\{t_S(d) \mid d \in \Delta^{\mathcal{I}}\}| \le 2^{|S|}$$ #### Proof: obvious ### Filtration of a model ### <u>Definition 3.15</u> (S-filtration) Let S be a finite set of concept descriptions, and \mathcal{I} an interpretation. We define an equivalence relation \simeq on $\Delta^{\mathcal{I}}$ as follows: $$d \simeq e \text{ iff } t_S(d) = t_S(e)$$ The \simeq -equivalence class of $d \in \Delta^{\mathcal{I}}$ is denote by [d]. The S-filtration of \mathcal{I} is the following interpretation \mathcal{J} : - $\bullet \ \Delta^{\mathcal{J}} := \{ [d] \mid d \in \Delta^{\mathcal{I}} \}$ - $A^{\mathcal{I}} := \{[d] \mid \exists d' \in [d]. \ d' \in A^{\mathcal{I}}\} \text{ for all } A \in N_C$ - $r^{\mathcal{J}} := \{([d], [e]) \mid \exists d' \in [d], e' \in [e]. (d', e') \in r^{\mathcal{I}}\} \text{ for all } r \in N_R$ Obviously, $|\Delta^{\mathcal{J}}| \leq 2^{|S|}$. ### Filtration #### important property We say that the finite set S of concept descriptions is closed iff $$\bigcup \{ \operatorname{Sub}(C) \mid C \in S \} \subseteq S$$ ### Lemma 3.16 Let S be a finite set of \mathcal{ALC} -concept descriptions, that is closed, \mathcal{I} an interpretation, and \mathcal{I} the S-filtration of \mathcal{I} . Then we have $$d \in C^{\mathcal{I}} \quad \text{iff} \quad [d] \in C^{\mathcal{J}}$$ for all $d \in \Delta^{\mathcal{I}}$ and $C \in S$. The following proposition shows that \mathcal{ALC} satisfies a property that is even stronger than the finite model property. ### Proposition 3.17 (bounded model property) Let \mathcal{T} be a TBox, C a concept description, and $S := \operatorname{Sub}(C) \cup \operatorname{Sub}(\mathcal{T})$. If C is satisfiable w.r.t. \mathcal{T} , then there is a model $\widehat{\mathcal{I}}$ of \mathcal{T} such that $C^{\widehat{\mathcal{I}}} \neq \emptyset$ and $|\Delta^{\widehat{\mathcal{I}}}| \leq 2^{|S|}$. **Proof:** let \mathcal{I} be a model of \mathcal{T} with $C^{\mathcal{I}} \neq \emptyset$, and $\widehat{\mathcal{I}}$ be the S-filtration of \mathcal{I} We must show: $$\bullet \ |\Delta^{\widehat{\mathcal{I}}}| \le 2^{|S|}$$ Lemma 3.14 • $$C^{\widehat{\mathcal{I}}} \neq \emptyset$$ follow from Lemma 3.16 The following proposition shows that ALC satisfies a property that is even stronger than the finite model property. ### Proposition 3.17 (bounded model property) Let \mathcal{T} be a TBox, C a concept description, and $S := \operatorname{Sub}(C) \cup \operatorname{Sub}(\mathcal{T})$. If C is satisfiable w.r.t. \mathcal{T} , then there is a model $\widehat{\mathcal{I}}$ of \mathcal{T} such that $C^{\widehat{\mathcal{I}}} \neq \emptyset$ and $|\Delta^{\widehat{\mathcal{I}}}| \leq 2^{|S|}$. ### Corollary 3.17b (decidability) In ALC, satisfiability of a concept description w.r.t. a TBox is decidable. # No finite model property <u>Theorem 3.18</u> (no finite model property) \mathcal{ALCNI} does not have the finite model property,