Nöthnitzer Str. 46 01187 Dresden Tel.: 0351/463-39167

2. Exercises for the Course 'Description Logics'

Exercise 5:

Extend the mapping τ_x of \mathcal{ALC} -concept descriptions to first-order formulas given in the lecture to the description logic \mathcal{ALCQ} , which augments \mathcal{ALC} with qualified number restrictions.

Exercise 6:

Recall that the description logic \mathcal{ALC} is equipped with the concept constructors negation (\neg) , conjunction (\sqcap) , disjunction (\sqcup) , existential restriction $(\exists r.C)$, and universal restriction $(\forall r.C)$. Each subset of this set of constructors gives rise to a fragment of \mathcal{ALC} .

Identify all minimal fragments that are equivalent to \mathcal{ALC} in the sense that for every \mathcal{ALC} -concept, there is an equivalent concept in the fragment.

Two concepts are equivalent iff the concepts have the same extension in every interpretation.

Exercise 7:

Consider the (graphical representation of the) interpretation \mathcal{I} with $\Delta^{\mathcal{I}} = \{d, e, f, g\}$:

For each of the following \mathcal{ALC} -concepts C, list all elements x of $\Delta^{\mathcal{I}}$ such that $x \in C^{\mathcal{I}}$:

- (a) $A \sqcup B$
- (b) $\exists s. \neg A$
- (c) $\forall s.A$
- (d) $\exists s. \exists s. \exists s. \exists s. A$
- (e) $\neg \exists r.(\neg A \sqcap \neg B)$
- (f) $\exists s.(A \sqcap \forall s. \neg B) \sqcap \neg \forall r. \exists r.(A \sqcup \neg A)$

Exercise 8:

Revisit the procedure for expanding TBoxes given in the proof of Proposition 2.6. Prove that

- (a) this procedure always terminates, and
- (b) that it returns a TBox that is equivalent to its input.

Hint for proving termination: count, for each concept name A, the number of concept names (directly or indirectly) used in the definition of A.

Exercise 9:

Consider the TBox

 $\mathcal{T} = \{ A \sqsubseteq A_1 \sqcup A_2, \quad A \sqcap \forall r. A \sqsubseteq C, \quad B \sqsubseteq A \sqcap \exists r. E, \quad D \sqsubseteq \forall r. A, \quad E \sqsubseteq \exists r. B \},$

the ABox

$$\mathcal{A} = \{r(a,b), \quad r(a,c), \quad r(d,c), \quad (B \sqcap \forall r.D)(a), \quad E(b), \quad (\neg A)(c), \quad (\exists s. \neg D)(d)\}$$

and the knowledge base $\mathcal{K} = (\mathcal{T}, \mathcal{A})$. Check for

- (a) the TBox \mathcal{T}
- (b) the ABox \mathcal{A} and
- (c) the knowledge base \mathcal{K}

whether it has a model. If it has one, specify such a model. If it does not have a model, explain why.