3. Exercises for the Course 'Description Logics'

Exercise 10:

Let \mathcal{A} be the ABox consisting of the following assertions:

likes(Ralf, Claudia) is-neighbor-of(Claudia, Peter) Blond(Claudia) $\label{eq:response} \begin{array}{l} \mathsf{likes}(\mathsf{Ralf},\mathsf{Peter})\\ \mathsf{is-neighbor-of}(\mathsf{Peter},\mathsf{Andrea})\\ \neg\mathsf{Blond}(\mathsf{Andrea}) \end{array}$

- (a) Does \mathcal{A} have a model?
- (b) Is Ralf an instance of the concept \exists likes.(Blond $\sqcap \exists$ is-neighbor-of. \neg Blond) in all models of \mathcal{A} ?
- (c) Is Ralf an instance of the concept $\exists likes.(\exists is-neighbor-of. (\forall is-neighbor-of. \neg Blond))$ in all models of \mathcal{A} ?

Exercise 11:

Let ${\mathcal T}$ be defined as follows:

$$\mathcal{T} = \{ \begin{array}{ccc} A & \sqsubseteq & \exists r. \neg B \\ A \sqcap B & \sqsubseteq & D \\ E & \equiv & E_1 \sqcap E_2 \sqcap E_3 \} \end{array} \qquad \begin{array}{ccc} C & \sqsubseteq & \forall r. (B \sqcup D) \\ D & \sqsubseteq & E_1 \sqcap E_2 \\ \end{array}$$

Which of the following subsumption relations holds? Explain.

- (a) $A \sqcap C \sqsubseteq \exists r. \neg B \sqcap D$
- (b) $E \sqsubseteq E_1 \sqcap E_2$
- (c) $\neg D \sqsubseteq \neg E_1 \sqcap \neg E_2$
- (d) $\neg E_3 \sqcap \neg E_2 \sqsubseteq E$
- (e) $A \sqcap \exists r.B \sqsubseteq \forall r.\top$

Exercise 12:

Prove claim 7. from Theorem 2.17: \mathcal{K} is consistent iff $\mathcal{A} \not\models \bot(a_{new})$, where a_{new} is a new individual w.r.t. ABox \mathcal{A} .

Exercise 13:

In the lecture we saw that bisimulations allow to compare the expressive powers of DLs.

- (a) Extend the notion of bisimulation relation to \mathcal{ALCN} .
- (b) Prove that \mathcal{ALCN} is bisimulation invariant for the bisimulation relation defined in (a).
- (c) Prove that \mathcal{ALCQ} is more expressive than \mathcal{ALCN} .

Exercise 14:

Let $\rho_1 \subseteq \Delta^{\mathcal{I}_1} \times \Delta^{\mathcal{I}_2}$ and $\rho_2 \subseteq \Delta^{\mathcal{I}_2} \times \Delta^{\mathcal{I}_3}$ be bisimulation relations. Prove that bisimulations are closed under

- (a) composition (e.g., $\rho_3 = \rho_2 \circ \rho_1$ is a bisimulation)
- (b) union (e.g., $\rho_3 = \rho_1 \cup \rho_2$ is a bisimulation).