4. Exercises for the Course 'Description Logics'

Exercise 14:

Let $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ be a consistent knowledge base. We write $C \sqsubseteq_{\mathcal{K}} D$ if $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ for all models \mathcal{I} of \mathcal{K} . Prove that for all \mathcal{ALC} -concepts C and D, we have $C \sqsubseteq_{\mathcal{K}} D$ iff $C \sqsubseteq_{\mathcal{T}} D$.

Hint: Use disjoint unions.

Exercise 15:

Show the following claim:

If a concept C is satisfiable w.r.t. an \mathcal{ALC} -TBox \mathcal{T} , then for all $n \geq 1$ there is a model \mathcal{I}_n of \mathcal{T} such that: $|C^{\mathcal{I}_n}| \geq n$.

Exercise 16:

In the lecture we saw that \mathcal{ALC} has the finite model property and the tree model property. Show that these properties hold in combination in case the TBox is empty. In particular show the following:

- (a) For a concept D let rd(D) denote the role-depth, i.e. the maximal number of nested quantifiers. For an \mathcal{ALC} -concept C the role-depth rd(C) is bounded by the concept size |C|.
- (b) For a tree model \mathcal{I} , let $\mathcal{I}_{|n}$ denote the model cut at depth n. Let \mathcal{I} be a tree model with root d and d' the root of $\mathcal{I}_{|n}$. Then for every \mathcal{ALC} -concept C with $rd(C) \leq n$ we have, $d \in C^{\mathcal{I}}$ iff $d' \in C^{\mathcal{I}_{|n}}$.
- (c) Every \mathcal{ALC} -concept C has a tree model of depth $\leq |C|$.

Exercise 17:

Prove or refute the following claim:

Given an \mathcal{ALC} -concept C and an \mathcal{ALC} -TBox \mathcal{T} . If \mathcal{I} is an interpretation and \mathcal{J} its filtration w.r.t. $\mathrm{Sub}(C) \cup \mathrm{Sub}(\mathcal{T})$, then the relation $\rho = \{(d, [d]) \mid d \in \Delta^{\mathcal{I}}, [d] \in \Delta^{\mathcal{J}}, d \simeq [d]\}$ is a bisimulation.