7. Exercises for the Course 'Description Logics'

Exercise 25:

We consider another form of blocking, where an individual can be blocked by an individual that is not necessarily an ancestor: anywhere blocking. Instead of the depth of an individual and the ancestor relation, it uses the age of an individual and the relation <.

The *age* of an individual x (*age*(x)) is defined as 0 for old individuals and n for a new individual x, if x was generated by the *n*th application of the \exists -rule.

Let \mathcal{A} be an ABox obtained by applying the tableau rules and the GCI rule to an initial ABox \mathcal{A}_0 . A new individual x is *anywhere blocked* by an individual a in an ABox \mathcal{A} , iff

- $\{C \mid C(x) \in \mathcal{A}\} \subseteq \{D \mid D(a) \in \mathcal{A}\}, \text{ and }$
- age(a) < age(x).

Prove the following for this form of blocking:

- a) soundness
- b) completeness

Hint: For what subset of the complete tableau do we need to construct a model?

c) termination

Exercise 26:

Let $\mathcal{K} = (\mathcal{A}_0, \mathcal{T})$ be an \mathcal{ALC} -knowledge base, with \mathcal{T} a general TBox. The *precompletion* of \mathcal{K} is the set of ABoxes \mathcal{M} that is produced by the tableau algorithm when starting with the set of ABoxes $\{\mathcal{A}_0\}$ and exhaustingly applying all rules except the \exists -rule. Do the following:

(a) Show that \mathcal{K} is consistent iff there is an open $\mathcal{A} \in \mathcal{M}$ such that for all individual names *a* occurring in \mathcal{A} , the concept $C^a_{\mathcal{A}} := \bigcap_{C(a) \in \mathcal{A}} C$ is satisfiable w.r.t. \mathcal{T} .

Hint: For the "if" direction, proceed as follows. The correctness of the tableau algorithm for \mathcal{ALC} implies that, if $C^a_{\mathcal{A}}$ is satisfiable, then exhaustively applying (all!) rules to the set of ABoxes $\{\{C^a_{\mathcal{A}}(a)\}\}$ yields a set \mathcal{M}' that contains an open and complete ABox. Show how to join all these ABoxes to obtain an open and complete tableau for \mathcal{A} and conclude that \mathcal{A}_0 is consistent w.r.t. \mathcal{T} .

(b) Use the result from (a) to prove that ABox consistency in \mathcal{ALC} can be decided in deterministic exponential time (EXPTIME).