
Selected Topics in Automata and

Logic

Rafael Peñaloza

SS 2010

Contents

1 Regular Languages and Logic 3

1.1 Regular Languages and Finite Automata 3
1.2 First-Order- and Monadic-Second-Order-Logic 5

2 Other Equivalent Representations 9

2.1 Two-way Finite Automata 9
2.2 First Order Logic with Transitive Closure 13

3 Two-Way Multihead Automata 17

4 k-ary Transitive Closure 26

5 Tree Walking Automata 33

6 Descriptive Complexity 44

2

1 Regular Languages and Logic

We first recall some of the basic notions and results of regular languages
and automata theory. We then investigate their relation to (extensions
of) first-order logic.

1.1 Regular Languages and Finite Automata

Definition 1.1. Let Σ be a finite alphabet. The class REGΣ of regular
languages over Σ is the smallest class such that:

• ∅, {ε}, and {a} are in REGΣ for all a ∈ Σ (where ε is the empty
word)

• if L1, L2 ∈ REGΣ then so are L1 ∪ L2, L1 · L2 = {u · v | u ∈
L1, v ∈ L2}, and L∗

1 = {u1 · · · un | n ≥ 0, ui ∈ L1}.

Regular languages are usually described by regular expressions. For
example, the expression ab∗a describes {a} · {b}∗ · {a}; that is, all words
starting and ending with a, and having only b’s inbetween.

A different characterization of regular languages can be made via
finite automata.

Definition 1.2. A non-deterministic finite automaton is a tuple of the
form A = (Q,Σ, I,∆, F), where

• Q is a finite set of states,

• Σ is a finite alphabet,

• I ⊆ Q is the set of initial states,

• ∆ ⊆ Q× Σ×Q is the transition relation, and

• F ⊆ Q is the set of final states.

3

One can use graphs to represent automata. Nodes represent the states
and (labeled) edges represent the transition relation. Special markings
are used to show the initial and final states. For example, the graph

→ 1 2
a

b

represents the automaton with Q = {1, 2}, ∆ = {(1, a, 2), (2, b, 1)},

I = {1} (represented by → 1), and F = {2} (represented by 2).

A path in the automaton is a sequence q0a1q1a2 . . . anqn where for ev-
ery i, 1 ≤ i ≤ n, (qi−1, ai, qi) ∈ ∆. Such a path is successful if q0 ∈ I and
qn ∈ F . The automaton accepts a word w if there is a successful path
such that w = a1a2 . . . an. The language accepted by the automaton A
is L(A) = {w ∈ Σ∗ | w is accepted by A}.

A language L ⊆ Σ∗ is called recognizable if there exists a finite au-
tomaton A that accepts L.

Kleene’s Theorem says that a language L ⊆ Σ∗ is recognizable iff it
is regular. This means that finite automata characterize the set of all
recognizable languages. In fact, this characterization still holds, even if
we restrict to only deterministic automata.

Definition 1.3. An automaton A = (Q,Σ, I,∆, F) is called determin-
istic iff

• |I| = 1 (i.e. I = {q0}),

• ∆ is functional; that is, for every q ∈ Q and a ∈ Σ there is at

most one q′ ∈ Q such that (q, a, q′) ∈ ∆.

Note. Sometimes deterministic automata are required to have a transi-
tion for each (q, a) ∈ Q×Σ. This does not make a difference with respect
to expressivity, but our definition allows a more compact representation
of the automata.

Given a non-deterministic automaton A, one can construct (using the
well-know power-set construction) a deterministic automaton A′ that
accepts the same language. This shows that deterministic automata
are as expressive as non-deterministic ones.

4

Finally, recall that regular (and thus also recognizable) languages are
closed with respect to the following operations:

• union (∪), intersection (∩),

• concatenation (·),

• Kleene star (∗), and

• complement (¯).

1.2 First-Order- and Monadic-Second-Order-Logic

We now look at the representation of regular languages by logical for-
mulae. We first recall how first-order formulae can be used to represent
languages, and then extend it to monadic second-order logic, capable of
expressing all regular languages.

We first assume w.l.o.g. that the alphabet Σ consists of binary tuples;
that is, Σ = {0, 1}k for some k. Notice that it is always possible to
encode a given finite alphabet in such a way.

We now considere first-order predicate logic extended with the fol-
lowing symbols:

=
,

<
,

P1, . . . , Pk

binary binary unary symbols

For the semantics, we consider only finite interpretations; w.l.o.g. we
assume then that the domain of a given interpretation I is dom(I) =
{1, . . . , n}. Then, = and < are interpreted as the usual equality and
order of natural numbers, and each Pj is interpreted as a set P I

j ⊆
dom(I).

Define, for each i, 1 ≤ i ≤ n the tuple σi = (bi1, . . . , bik), where

bij =

{

1 if i ∈ P I
j ,

0 if i /∈ P I
j .

Then, the interpretation I corresponds to the word σ1σ2 . . . σn. Con-
versely, it is easy to see that for each such word, one can build a (unique)
interpretation I.

5

Example 1.4. Let k = 2 (that is, Σ = {0, 1}2). The word

(

1
0

)(

1
1

)(

0
0

)(

1
0

)

over Σ corresponds to the interpretation I where

• dom(I) = {1, 2, 3, 4},

• P I
1 = {1, 2, 4}, and

• P I
2 = {2}.

Given this equivalence between words and interpretations, it makes
sense to say that a word w ∈ Σ+ makes a formula ϕ true (w |= ϕ).

Definition 1.5. Let Σ = {0, 1}k , and ϕ be a closed formula (i.e., with-
out free variables) of first-order predicate logic using the extra-logical
symbols =, <, P1, . . . , Pk. Then ϕ defines the language

L(ϕ) = {w ∈ Σ+ | w |= ϕ}.

Note. Interpretations cannot have empty domains. Thus, the empty
word does not describe any interpretation; i.e., ε /∈ L(ϕ). However,
this is not a strong restriction since, for instance, a language L ⊆ Σ∗ is
regular iff L \ {ε} is regular.

Example 1.6. Let k = 1. The language 10∗1 is defined by the formula:

∃x, y.(P1(x) ∧ P1(y) ∧ x < y∧

∀z.(¬(z < x) ∧ ¬(y < z) ∧ (x < z < y ⇒ ¬P1(z)))).

Since we are interested in languages, we introduce the following useful
abbreviations:

• Qσ(x): for every σ ∈ Σ, the formula Qσ(x) with one free vari-
able that expresses that σ occurs at position x. For instance,
Q(0,1)(x) := ¬P1(x) ∧ P2(x).

• Min(x): this formula says that x is the first position of the word:
Min(x) := ¬∃y.(y < x). We sometimes use simply the constant
min to represent this position; it is always interpreted as 1.

6

• Max(x): expresses the last position of the word:
Max(x) := ∀y.(y ≤ x). The constant max is also used.

• Succ(x, y): y is the successor position of x:
Succ(x, y) := x < y ∧ ¬∃z.(x < z ∧ z < y). The function symbol
s(x) is also used.

Example 1.7. The language ab∗a is defined by

Qa(min) ∧Qa(max) ∧min 6= max∧

∀x.(min < x < max⇒ Qb(x)).

However, first-order logic does not suffice for expressing all regular
languages. For example, there is no first-order formula that can express
the language a(aa)∗, which is obviously regular. In fact, it can be shown
that first-order logic can only express star-free languages.

Definition 1.8. Let Σ be a finite alphabet. The class SFΣ of all star-
free languages over Σ is the smallest class such that:

• all finite languages over Σ belong to SFΣ,

• if L1, L2 ∈ SFΣ, then so are L1 ·L2, L1∪L2, L1∩L2 and L = Σ∗\L.

Example 1.9. For Σ = {a, b}, the language ab∗a ∈ SFΣ since

ab∗a = a · (Σ∗ · a · Σ∗) · a

and Σ∗ = ∅.

Proposition 1.10. For a language L ⊆ Σ+ the following are equivalent:

1. L ∈ SFΣ.

2. there is a closed first-order formula ϕ with L = L(ϕ).

In order to capture the whole expressivity of regular languages, we al-
low second-order quantifiers ∀X,∃X ranging over subsets of the domain.
This logic is called S1S.

7

Example 1.11. The language a(aa)∗ is defined by the formula

∀xQa(x) ∧ ∃X∃Y (X(min) ∧X(max) ∧ ∀x(X(x)⇔ ¬Y (x))∧

∀x, y(X(x) ∧ Succ(x, y)⇒ Y (y))∧

∀x, y(Y (x) ∧ Succ(x, y)⇒ X(y))).

Proposition 1.12. For a language L ⊆ Σ+ the following are equivalent:

1. L ∈ REGΣ.

2. there is a closed S1S formula ϕ with L = L(ϕ).

8

2 Other Equivalent

Representations

In this chapter we introduce a new automata model and a new (first-
order) logic, that can express exactly the class of regular languages.

2.1 Two-way Finite Automata

We now introduce a generalization of finite automata, which is able to
move backwards while processing a word. These are called two-way
finite automata.

In order to simplify the constructions and proofs, we will assume that
the exclusive symbols ⊲ and ⊳ appear at the beginning and the end
of each input word, respectively. For instance, the word aa, will be
represented by the chain ⊲aa⊳.

Note. The language L ⊆ Σ∗ is accepted by a (one-way) finite automa-
ton iff there is a finite automaton that accepts ⊲L⊳. (EXERCISE!)

Definition 2.1. A two-way finite automaton is a tuple of the form
A = (Q,Σ, I,∆, F), where

• Q is a finite set of states,

• Σ is a finite alphabet,

• I ⊆ Q is the set of initial states,

• ∆ ⊆ Q× (Σ ∪ {⊲,⊳})×Q× {−1, 0, 1} is the transition relation,
and

• F ⊆ Q is the set of final states.

9

Two-way finite automata only differ from finite automata as defined
in the previous chapter in the transition relation ∆. Intuitively, a tran-
sition does not only express the new state of the automaton, but also
whether the head should move to the left (-1), right (1) or stay in the
same place (0). We assume that if the head reads the symbol ⊲, then
there is no transition that moves the head to the left. Likewise, no
transition moves the head to the right if the head is reading ⊳.

The notion of deterministic two-way automata is analogous to the
one-way case; that is, a two-way automaton is deterministic if it has
only one initial state and there is at most one transition for any given
state and symbol in Σ ∪ {⊲,⊳}.

A configuration of a two-way automaton A is an element of Q × N,
where the first component indicates the state of the automaton, and the
second the position of the head. A run is a sequence of configurations
(or, equivalently, a word in (Q×N)∗). The sequence (q0, j0) . . . (qm, jm)
is a run of A on a word w = a1 . . . an ∈ Σ∗ if q0 ∈ I, j0 = 0, and for all
i, 0 ≤ i ≤ m it holds: (i) 0 ≤ ji ≤ n+1 and (ii) (qi, aji

, qi+1, ji+1− ji) ∈
∆, where a0 = ⊲ and an+1 = ⊳. This run is accepting if qm ∈ F . The
automaton A accepts w if it has an accepting run on w.

Two-way finite automata can also be represented using graphs. The
only difference is that the edges (that represent the transition relation)
are labeled with tuples (σ, j) ∈ Σ× {−1, 0, 1}.

Example 2.2. The (deterministic) two-way automaton

→ 1 2 3

(Σ ∪ {⊲}, 1)

(⊳,−1) (Σ \ {b},−1)

accepts the language Σ∗ \ (Σ∗b) for any alphabet Σ.

Clearly, two-way automata are more general than their one-way coun-
terparts: every one-way finite automaton can be seen as a two-way au-
tomaton where all the transitions move the head to the right. As we
will show next, they have in fact the same expressive power. That is, for
every two-way automaton A, we can construct a one-way automaton A′

such that L(A) = L(A′). In particular, this means that two-way finite
automata accept the class of regular languages.

10

To prove the equivalence of one-way and two-way automata, we first
give a characterization of when a two-way automaton does not accept
a word w.

Lemma 2.3. Let A = (Q,Σ, I,∆, F) be a two-way automaton and
w = a1 . . . an ∈ Σ∗. A does not accept w if and only if there is a sequence
T0, . . . , Tn+1 of subsets of Q such that the following three conditions
hold:

1. I ⊆ T0,

2. Ti ∩ F = ∅ for all 0 ≤ i ≤ n+ 1, and

3. for 0 ≤ i ≤ n, if q ∈ Ti and (q, ai, q
′, k) ∈ ∆, then q′ ∈ Ti+k.

Proof. Suppose first that A does not accept w. Then we define, for each
0 ≤ i ≤ n + 1, the set Ti as the set of all states q ∈ Q such that (q, i)
is a configuration in a run of A in w. We show now that T0, . . . , Tn+1

satisfies the three conditions of the lemma. If q ∈ I, then (q, 0) is a
run of A on w, and hence I ⊆ T0. Since A does not accept w, then
for every q ∈ F it follows that no configuration of the form (q, i), with
0 ≤ i ≤ n+ 1, occurs in any run of A on w; this means that Ti ∩F = ∅
for all 0 ≤ i ≤ n + 1. Finally, if 0 ≤ i ≤ n + 1 and q ∈ Ti, then there
is a run (q0, j0) . . . (ql, jl) of A on w such that ql = q and jl = i. If
(q, ai, q

′, k) ∈ ∆, then (q0, j0) . . . (ql, jl)(q
′, i + k) is also a run of A on

w, and thus q′ ∈ Ti+k.
For the other direction, suppose now that A accepts w. Then there

must be an accepting run of A on w. Let (q0, j0) . . . (qm, jm) be such
a run. In particular, it follows that qm ∈ F . We show now that no
sequence T0, . . . , Tn+1 can satisfy the three conditions of the lemma. Let
T0, . . . , Tn+1 be a sequence that satisfies the first and third conditions.
We show by induction on i that qi ∈ Tji

for 0 ≤ i ≤ m. Clearly, q0 ∈ T0

because q0 ∈ I and I ⊆ T0. For the induction step, assume that we
have shown that qi ∈ Tji

for some 0 ≤ i < m. Then there is a transition
(qi, aji

, qi+1, k) ∈ ∆ such that ji+1 = ji+k. But then, qi+1 ∈ Tji+1
. This

in particular shows that qm ∈ Tjm
, but then Tjm

∩F 6= ∅, and hence the
sequence cannot satisfy the second condition of the lemma.

With the help of this lemma we can now show equivalence of two-way
and one-way automata.

11

Theorem 2.4. Let A = (Q,Σ, I,∆, F) be a two-way automaton. Then
there is a one-way automaton A′ such that L(A) = L(A′).

Proof. We prove this in an indirect way using the closure properties of
one-way automata: instead of constructing a one-way automaton that
accepts the language L(A), we construct one that accepts the comple-
ment language Σ∗ \ L(A). However, we know that the class of regular
languages is closed under complement, and so this means that there is
an automaton that accepts L(A).

Let B be the automaton (P,Σ, J,Λ, G) where:

• P = 2Q\F ∪ (2Q\F × 2Q\F); that is, sets of non-final states and
pairs of sets of non-final states from A,

• J = {T ⊆ Q \ F | I ⊆ T},

• (T,⊲, (T,U)) ∈ Λ if

– if q ∈ T and (q,⊲, q′, 0) ∈ ∆, then q′ ∈ T , and

– if q ∈ T and (q,⊲, q′, 1) ∈ ∆, then q′ ∈ U ;

• ((T,U), a, (U, V)) ∈ Λ if

– if q ∈ U and (q, a, q′,−1) ∈ ∆, then q′ ∈ T ,

– if q ∈ U and (q, a, q′, 0) ∈ ∆, then q′ ∈ U , and

– if q ∈ U and (q, a, q′, 1) ∈ ∆, then q′ ∈ V .

• (T,U) ∈ G if

– if q ∈ U and (q,⊳, q′,−1) ∈ ∆, then q′ ∈ T , and

– if q ∈ U and (q,⊳, q′, 0) ∈ ∆, then q′ ∈ U ;

We show that B accepts a word ⊲w iff A rejects w.
Assume first that B accepts ⊲w, where w = a1a2 . . . an; then there is a

succesful run of B of the form T0 ⊲ (T0, T1)a1(T1, T2)a2 . . . an(Tn, Tn+1)
with (Tn, Tn+1) ∈ G. We show that the sets T0, . . . , Tn+1 satisfy the
conditions of Lemma 2.3. 1. since T0 ∈ J , then I ⊆ T0. 2. since
the sets that form the states cannot include any final states from A,
it follows that Ti ∩ F = ∅ for all i, 0 ≤ i ≤ n + 1. Finally, for 3. let
q ∈ Ti and (q, ai, q

′, k) ∈ ∆. If i = 0, then a0 = ⊲ and the transi-
tion (T0,⊲, (T0, T1)) ∈ Λ ensures q′ ∈ Ti+k. If i = n + 1, then the

12

acceptance condition ensures that q′ ∈ Ti+k. Otherwise, we have a
transition ((Ti−1, Ti), a, (Ti, Ti+1)) ∈ Λ, and by construction it satisfies
that q′ ∈ Ti+k. Hence, A rejects w.

Assume now that A reject w. Then, there are sets T0, T1, . . . , Tn+1

satisfying the conditions of Lemma 2.3. Then the run

T0 ⊲ (T0, T1)a1(T1, T2)a2 . . . an(Tn, Tn+1)

is successful for B:

• T0 ∈ J because I ⊆ T0;

• T0, (Ti, Ti+1) ∈ P for all i, 0 ≤ i ≤ n since Ti ∩ F = ∅,

• the transitions and the final state condition are guaranteed by
Condition 3.

Hence B accepts ⊲w.

Obviously, this theorem also implies that deterministic and non-deter-
ministic two-way finite automata accept the same class of languages:
regular languages.

Example 2.5. Let Σ = {a} and L = a+. (Hand-written example)

2.2 First Order Logic with Transitive Closure

We now look at a logical representation that does not need (explicit)
second-order constructors. What we use is the transitive closure oper-
ator.

Consider a formula ϕ(x, y) with two free variables (x and y). We can
also see this formula as a binary relation: xϕy iff ϕ(x, y) is true. We
can thus also consider the reflexive, transitive closure of this relation.
We denote this closure as TC[ϕ]. Notice that TC[ϕ] still has two free
variables.

The semantics of this operator is as follows: given two elements d, e
of the domain dom(I), the interpretation I satisfies TC[ϕ(x, y)](d, e) if
d = e or there exist d1, . . . , dm ∈ dom(I) such that

• d = d1;

13

• e = dm; and

• I |= ϕ(di, di+1) for all 1 ≤ i < m.

Intuitively, the transitive closure operator allows us to represent the
Kleene star, which is the only missing piece of expressivity necessary
for obtaining REGΣ.

Example 2.6. Consider the formula

ϕ(x, y) = s(x, y) ∧Qb(y),

and let
ψ = Qa(min) ∧ TC[ϕ](min,max).

Then L(ψ) = ab∗.

We consider also a notion of deterministic transitive closure, where
we add the restriction that if ϕ(d, e1) and ϕ(d, e2) hold, then e1 = e2.
Formally, the operator DTC is defined as:

DTC[ϕ(x, y)] = TC[ϕ(x, y) ∧ ∀z.ϕ(x, z)⇒ y = z].

Example 2.7. Let Σ = {a, b}, and consider the following formulas:

ϕ(x, y) = Qa(y),

ψ = Qa(min) ∧ DTC[ϕ](max,min).

Then L(ψ) = ab∗.

Note. We could have changed TC to DTC in Example 2.6 and obtain
the same language. However, changing DTC to TC in Example 2.7
would yield a different language, namely aΣ∗.

Theorem 2.8. First-order logic extended with TC or DTC captures
exactly the class of regular languages.

Proof. We first show that FOL with DTC can express all regular lan-
guages. For this, we construct a formula that describes the behaviour of
a deterministic automaton. Let A = (Q,Σ, {q0},∆, F) be a determinis-
tic automaton and assume w.l.o.g. thatQ = {1, . . . ,m}; additionally, we

14

assume that there are no transitions from final states. We build recur-
sively the formulas χn

ij whose intuitive meaning is as follows: χn
ij(p1, p2)

is true iff whem A is started in state i with its head in position p1, then
A can move to state j in position p2, while not passing through any
state higher than n. For the base case, we set

χ0
ij(p1, p2) =

∨

a∈Σ,(i,a,j)∈∆

Qa(p1) ∧ p2 = s(p1).

This formula is true iff there is a transition from state i to state j. For
constructing the formula χn

ij, with n > 0, we need to be able to express
that we can reach state j from state i without using any state greater
than n. This can be decomposed as follows: first, we reach state n from
i using no state higher than n−1 (i.e. χn−1

in), then we can reach as many
times as we want the state n, using again only states smaller than n (i.e.
χn−1

nn), and finally, reach state j from n (i.e. χn−1
nj). The second part

of this intuitive construction (“as many times as we want”) resembles a
transitive closure. Furthermore, since A is deterministic, given an input
word there is at most one position p2 that satisfies χn−1

nn (p1, p2) for any
given p1. Hence, we can use the deterministic TC operator:

χn
ij(p1, p2) =∃p3, p4.(χ

n−1
in (p1, p3)∧

DTC[χn−1
nn](p3, p4)∧

χn−1
nj (p4, p2))∨

χn−1
ij (p1, p2).

By definition, we know that DTC can be rewritten to TC, and hence
also TC can express all regular languages. Now, to show that TC cannot
express anything beyond regular languages, we show how to encode the
TC operator in monadic second order logic. Let ψ = TC[ϕ](x, y). We
define a second order formula θ(x) that expresses that A is the minimal
set that contains x and is closed under ϕ:

θ(x) =(A(x) ∧ ∀v,w.A(v) ∧ ϕ(v,w)⇒ A(w))∧

(∀B.(B(x) ∧ (∀v,w.B(v) ∧ ϕ(v,w) ⇒ B(w)))⇒

(∀v.A(v)⇒ B(v))).

15

The formula ψ can be substituted by ∃A.θ ∧ A(y) yielding an S1S for-
mula. Thus, FOL with TC can only express regular languages.

16

3 Two-Way Multihead Automata

We now go beyond the realm of regular languages by allowing automata
to read several symbols at the same time. That is, the automaton has
several heads that traverse the input, and the internal state and motion
of these heads depends on the symbols read by all of them.

Definition 3.1. A two-way automaton with k heads is a tuple of the
form A = (Q,Σ, I,∆, F), where Q,Σ, I and F are as in regular two-way
automata, and ∆ ⊆ Q×(Σ∪{⊲,⊳})k×Q×{−1, 0, 1}k is the transition
relation.

Such an automaton is called one-way if no transition moves any head
to the left; i.e., if ∆ ⊆ Q× (Σ ∪ {⊲,⊳})k ×Q×{0, 1}k . The notions of
deterministic k-head automata are analogous as in the one-head case.

A configuration of a two-way k-head automaton A is an element of
Q×N

k, where the first component indicates the state of the automaton
and the second the position of each of the heads. A run is a sequence
of configurations. The sequence (q0, j01, . . . , j0k) . . . (qm, jm1, . . . , jmk)
is a run of A on a word w = a1 . . . an ∈ Σ∗ if q0 ∈ I, for all 1 ≤
ℓ ≤ k, j0ℓ = 0 and for all i, 0 ≤ i ≤ m it holds that 0 ≤ jiℓ ≤ n + 1
and (qi, (aji1

, . . . , ajik
), (ji+1,1 − ji1, . . . , ji+1,k − jik)) ∈ ∆. The run is

accepting if qm ∈ F .
Multi-head automata are strictly more expressive than one-head au-

tomata. For instance, the language anbn is not regular, but can be
accepted by a deterministic one-way 2-head automaton (Exercise!).

In fact, even if we consider only one-way automata, adding more
heads produces always an increase in expressivity. Before showing this,
and other results, let us look at some examples of languages accepted
by multi-head automata.

Example 3.2. Let m ∈ N and Σ = {0, 1, ∗}. Define the language

Lm = {w1 ∗ w2 ∗ . . . ∗ w2m | wi ∈ {0, 1}
∗, wi = w2m+1−i, 1 ≤ i ≤ 2m}.

17

In other words, Lm is the language of all words of the form

w1 ∗ . . . ∗ wm ∗ wm ∗ . . . ∗ w1

where wi ∈ {0, 1}
∗, 1 ≤ i ≤ m.

This language can be accepted by a deterministic automaton that has
“enough” heads; more precisely,

Lemma 3.3. For all k,m ∈ N such that m ≤

(

k
2

)

, there is a 1-kDFA

that accepts Lm.

Proof Sketch. The automaton that accepts Lm works as follows: the
first head traverses the last k−1 words w2m+2−k, . . . , w2m, while the re-
maining k−1 heads are used to compare these words with wk−1, . . . , w1,
respectively. Afterwards, the remaining k − 1 heads are positioned at
the beginning of word wk and the same procedure can be inductively
repeated to verify that wk ∗ . . . ∗ w2m+1−k is in Lm+1−k.

Note that: (i) the procedure is deterministic and (ii) the first head
cannot be used in the recursive call, since it has already reached the
end of the word.

In fact, this number of heads is necessary, in the sense that there is

no (non-deterministic) 1-kFA that accepts Lm if m >

(

k
2

)

.

Lemma 3.4. For all k,m ∈ N, if m >

(

k
2

)

, then there is no 1-kFA

that accepts Lm.

Proof. Assume that there is a 1-kFA that accepts Lm. In particular, it
must accept all the words in the set

Lν
m = {w1 ∗ . . . ∗ w2m | wi ∈ {0, 1}

ν , wi = w2m+1−i, 1 ≤ i ≤ 2m}.

That is, the sublanguage of Lm where all the subwords have a fixed
length ν. We now define the type of a configuration (q, j1, . . . , jk) as
the tuple (⌈j1/(ν + 1)⌉, . . . , ⌈jk/(ν + 1)⌉). The type of a configuration
specifies which word (or following delimiter) is being read by each of
the heads.

18

Let c1(x), c2(x), . . . , cℓx
(x) be a successful run of A over a word x ∈

Lν
m (where ℓx is the length of this run). Let now d1(x), . . . , dℓ′x(x) be

the subsequence obtained by selecting c1(x) and all subsequent ci(x)
such that type(ci(x)) 6= type(ci−1(x)) (that is, the subsequence of con-
figurations where at least one head changes the word it is looking at).
We call this subsequence a pattern of x. Since ℓ′x ≤ k · (2m − 1) + 1,
there can be at most

P = (|Q| · (2m(ν + 1))k)k·(2m−1)+1

patterns.
We now partition the set Lν

m according to their patterns. As |Lν
m| =

2mν , there must be a set S0 with at least 2mν/P words. Let d̂1, . . . , d̂ℓ̂
be the pattern that defines S0.

Claim. For any run of A on an x ∈ Lν
m, there exist i such that wi∗

and w2m+1−i∗ (or w2m⊳ if i = 1) are never being read simultaneously.

Proof of Claim. It two heads read such a matched pair of words simul-
taneously, then at no other point in the run could the same pair of heads

read another matched pair of words. Since there are only

(

k
2

)

pairs of

heads but m >

(

k
2

)

matched pairs of words, the claim follows.

Notice that the i given in this claim depends exclusively on the pat-
tern of the run. Let i0 be such a value for the pattern d̂1, . . . , d̂ℓ̂. We
can then partition S0 into classes according to the string

w1 ∗ w2 ∗ · · · ∗ wi0−1 ∗ wi0+1 ∗ · · · ∗ w2m−i0 ∗ w2m+2−i0 ∗ · · · ∗ w2m.

That is, two words in S0 belong to the same class iff they are identical
except in wi0 , w2m+1−i0 .

Let now S1 be a class that contains at least

|S0|/2
ν(m−1) ≥ 2ν/P

words, and let ν be large enough so that |S1| ≥ 2.
Let now x = x1 ∗ · · · ∗ x2m and y = y1 ∗ · · · ∗ y2m be two distinct

words in S1. By assumption xj = yj iff j /∈ {i0, 2m + 1 − i0}. We

19

claim that the word z = x1 ∗ · · · ∗ x2m−i0 ∗ y2m+1−i0 ∗ · · · obtained by
replacing x2m+1−i0 in x with y2m+1−i0 is accepted by A, but z /∈ Lm

since zi0 6= z2m+1−i0 , which gives us the desired contradiction.
Let c1(x), . . . and c1(y), . . . be successful runs of x and y, respectively.

By construction, both runs contain the pattern d̂1, . . . , d̂ℓ̂ as a subse-

quence. We divide the runs into ℓ̂ blocks each by beginning a new block
with each occurrence of an element d̂j .

By definition of the pattern, the subwords of x or y being read change
only at the transitions between blocks; during any given block, they
remain fixed. Since the runs have the same pattern, during the i-th
block the heads are reading the corresponding subwords of x and y.

We construct an accepting run for A on z by selecting successive
blocks from the run for x {ci(x)}, except when A would be reading dur-
ing that block x2m+1−i0 6= z2m+1−i0 , in which case, we select the corre-
sponding block from the run for y {ci(y)} (since y2m+1−i0 = z2m+1−i0).
This sequence is a valid computation for z since the last configuration
in block i for either run yields d̂i+1 as next configuration of A, and by
construction A never reads i0 and 2m + 1 − i0 simultaneously, so, at
any moment, A behaves exactly as it would if the input had been x or
y.

Corollary 3.5. For all k ≥ 1, k + 1 head (deterministic) multihead
automata are more expressive than k head (deterministic) multihead
automata.

Proof. Let m =

(

k + 1
2

)

. The language Lm is accepted by a 1-k+1DFA

(Lemma 3.3) (in particular by a 1-k + 1FA) but not by any 1-kFA
(Lemma 3.4) (in particular by no 1-kDFA).

However, two heads suffice for accepting the complement of Lm.

Lemma 3.6. For all m ∈ N, there is a 1-2FA that accepts Lm.

Proof Sketch. The automaton non-deterministically guesses if the input
word does not match the input syntax, or if there are two subwords
wi, w2m+1−i that are not equal. It then needs at most two heads to
verify its guess.

20

This, in particular, means that non-deterministic k-head automata
(with a fixed k) are not closed under complement. Furthermore, since
1-kDFA are closed under complement (Exercise!), the following corollary
follows.

Corollary 3.7. For every k ≥ 1 there is a language that is recognized
by a 1-2FA but by no 1-kDFA.

This, however, says nothing about the limit. That is, we still do not
know whether the family of all non-deterministic one-way multihead
automata is strictly more expressive than that of deterministic one-way
multihead automata. To see that this is the case, we consider other
related languages:

Mm = {w1 ∗ w2 ∗ . . . ∗ w2m | wi ∈ {0, 1}
∗,∃i.wi 6= w2m+1−i},

M =
⋃

m∈N

Mm.

Notice that M is not Lm.

Lemma 3.8. There is a 1-3FA that accepts M .

Proof. To recognize this language, we can send heads one and two to
the beginning of some (non-deterministically chosen) subword wi. We
use head one to count the number of words between wi and the end
marker ⊳, which is used to (simultaneously) position head three at the
beginning of word w2m+1−i. At this point, we have head two pointing
at the beginning of wi and head three at word w2m+1−i. Thus, we can
use them both to verify that wi 6= w2m+1−i.

Lemma 3.9. There is no 1-kDFA that accepts M

Proof. Suppose there is a 1-kDFA that accepts M. Then, there is also
a 1-kDFA that accepts M . This implies that, for any fixed m, the
language

Lm = M ∩ {w1 ∗ . . . ∗ w2m | wi ∈ {0, 1}
∗, 1 ≤ i ≤ 2m}

is accepted by a 1-k+1DFA: one needs only an additional head to count
up to 2m.

21

Hence, if we choose m >

(

k + 1
2

)

we obtain a contradiction to

Lemma 3.4.

Corollary 3.10. Nondeterministic one-way three-head automata are
strictly more expressive than deterministic one-way multihead automata.

Note. It is in fact possible to improve the result from Corollary 3.10:
nondeterministic one-way two-head automata are strictly more expres-
sive than deterministic one-way multihead automata (Exercise?).

We now show that one-way deterministic multihead automata are not
closed under concatenation, union and intersection, with the help of the
following languages:

Cm = {u ∗ w | u ∈ {0, 1}∗, w ∈ Lm},

Dm = {w#w | w ∈ Cm},

Em = {u ∗ w | u ∈ {0, 1}∗, w ∈Mm},

Fm = {u ∗ w#v ∗ w | u 6= v ∈ {0, 1}∗, w ∈ Lm}.

Lemma 3.11. Let k ∈ N and m =

(

k
2

)

. For any language L such that

1. Cm ∪Dm ⊆ L, and

2. L ∩ (Em ∪ Fm) = ∅,

there is no 1-kDFA that accepts L.

Proof Sketch. The proof follows the same basic idea of Lemma 3.4. Sup-
pose that there is a 1-kDFA A that accepts L and let y ∈ Cm ∪ Dm.
We can look at the patterns of an accepting run of y, up to the point
in which one head has read the whole subword word y1 = u ∗ w of y
(that is, the part of the run that would be equivalent to the words y1

and y1#y1, since A is deterministic).
There are two possible cases: either (i) every head has already read

the initial subword u ∈ {0, 1}∗, or (ii) there is at least one head that
has not read that initial subword.

22

For the case (i), we consider words y1#y1 ∈ Dm, where y1 has the
pattern described before. Since at this point all heads have read the
subword u in the part before the symbol #, but none has read any
symbol after #, this automaton will accept also a word u ∗ w#v ∗ w,
where u 6= w. But by assumption 2. this word is not in L.

For the case (ii) we consider the words in Cm. Then at this point we
have a head that is at the end of the word, while one head has not yet
read the initial subword u. Hence, there is an i0, 1 ≤ i0 ≤ m such that
no pair of heads is reading both instances of the word wi0 at the same
time. As in the proof of Lemma 3.4, we can produce a word in Em that
is accepted by A, which yields a contradiction.

Theorem 3.12. One-way k-head automata are not closed under con-
catenation, union, or intersection.

Proof. Consider the languages

G1 = {0, 1}∗ ∗ ∪{ε},

G2 = {w#w | w ∈ {0, 1, ∗}∗} ∪ {ε}.

It is easy to see that G1 is accepted by a 1-1DFA, and G2 by a 1-2DFA.

Let now m =

(

k
2

)

.

The language G1 ·G2 ·Lm is not accepted by any 1-kDFA, because it
satisfies the conditions of Lemma 3.11:

1. Cm ⊆ G1 · {ε} · Lm ⊆ G1 · G2 · Lm, and Dm ⊆ {ε} · G2 · {ε} ⊆
G1 ·G2 · Lm.

2. Since Em has no symbol #, we get that G1 · G2 · Lm ∩ Em =
G1 · {ε} · Lm ∩ Em = ∅, because in Em there is a j such that
wj 6= w2m+1−j . Since the words in Fm have only one symbol # in
the middle, it holds that G1 ·G2 · Lm ∩ Fm = {ε} ·G2 · {ε} = ∅.

Thus, 1-kDFA are not closed under concatenation.
For the closure under union, notice that {0, 1}∗ ∗ ·Lm is accepted by

a 1-kDFA, but the language G2 ∪ {0, 1}
∗ ∗ ·Lm satisfies the conditions

of Lemma 3.11 (Exercise!).
Since 1-kDFA are closed under complement, this also shows that they

are not closed under intersection.

23

Using similar arguments, it is possible to prove that 1-kDFA are not
closed under Kleene star, reversal, and other operations.

For non-deterministic multihead automata things are slightly differ-
ent. In fact, we know already that, contrary to the deterministic case,
non-deterministic k-head automata are not closed under complement.
It is also easy to see that this class of automata is closed under union:
given two 1-kFA A1,A2 that accept languages L1 and L2, respectively,
one simply constructs the automaton A as the disjoint union of A1

and A2. A accepts the language L1 ∪ L2. However, this class is not
closed under intersection. One can construct two languages that are ac-
cepted by 1-kFA, but whose intersection yields the language Lm+1 with

m =

(

k
2

)

(Exercise!). As shown by these three specific closure proper-

ties, deterministic and non-deterministic multihead automata may have
very different behaviours with respect to distinct operators.

For two-way automata we have the following properties. (1) two-
way deterministic/non-deterministic k-head automata are closed under
intersection: for recognizing L1 ∩ L2, simply run the automaton that
accepts L1, but upon reaching a final state, “restart” the automaton by
setting all the heads back to the initial symbol ⊲, and then run the au-
tomaton accepting L2; (2) two-way non-deterministic k-head automata
are closed under union. All other closure properties for this family of
automata are left open in this course.

Perhaps more interesting is the fact that the emptiness problem for
one-way three-head deterministic automata is undecidable. That is, by
allowing two more heads in the automaton we jump from a polynomial
time emptiness test (in DFA) to undecidability.

Theorem 3.13. The emptiness problem for 1-3DFA is undecidable.

Proof. We show that we can build a deterministic automaton that ac-
cepts the halting computations of deterministic Turing machines on a
blank tape. Since it is undecidable whether such computations exist in
general, we obtain the desired result.

Let Z be a deterministic TM, and wZ = v1 ∗ v2 ∗ . . . ∗ vn be the
halting computation of Z on a blank input tape. More clearly, v1 is
the initial configuration, vn is the halting configuration and vi+1 is the
direct successor of vi. Assume w.l.o.g. that n ≥ 2

24

The automaton works as follows: head 1 reads the state and symbol
of the configuration, while heads 2 and 3 check that each configuration
is compatible with its predecessor given the instructions of the TM.
The following example shows the important details of this construction
[handwritten example].

Heads 2 and 3 move simultaneously over consecutive configurations,
checking that the symbols in the tape are the same (except for that
written by the TM-head in the last action) and that the TM-head is in
the correct position, according to the instructed movement. Afterwards,
head 1 moves to the symbol representing the internal state of the TM
in the following configuration, confirms that it is correct, and reads the
associated symbol to check on the next instruction. If the instruction is
to HALT, then head 3 must be reading the symbol ⊳ (and only then).

This automaton accepts the word wZ (and only this string) iff Z halts.
This shows that the emptiness problem for 1-3DFA is undecidable.

Note. It was recently shown (in 2008) that, if one allows two-way move-
ments, then two heads are enough; i.e., the emptiness problem for 2-
2DFA is undecidable. It is still an open problem whether the emptiness
problem 1-2DFA, or even 1-2FA is undecidable too.

25

4 k-ary Transitive Closure

We now look at a logical representation of the languages accepted by
multihead automata. Recall from Section 2.2 that the transitive closure
operator uses as its basis a first-order formula with two free variables.
Intuitively, this can be thought of as a relation between the (only) head
before and after a transition of an automaton. We can then lift this
intuition to the multihead case. Now, the formula ϕ will represent a re-
lation between the k heads before and after a transition. Hence, ϕ must
have 2k free variables; i.e., it is of the form ϕ(x1, . . . , xk, y1, . . . , yk),
representing the following binary relation between tuples of k elements:
(x1, . . . , xk)ϕ(y1, . . . , yk) iff ϕ(x1, . . . , xk, y1, . . . , yk) is true.

As in the case where k = 1, we can consider the reflexive, transitive
closure of this relation, which we call k-ary transitive closure and denote
as TCk[ϕ]. Notice that TCk[ϕ] has 2k free variables too.

For brevity, when the arity k is known, we will use the −→x to denote
the tuple x1, . . . , xk.

The semantics of this operator is a simple generalization of the unary

transitive closure from Section 2.2: given 2k elements
−→
d ,−→e of the

domain dom(I), the interpretation I satisfies TCk[ϕ(−→x ,−→y)](
−→
d ,−→e) if

−→
d = −→e or there exist

−→
d1, . . . ,

−→
dm ∈ dom(I)k such that the following

hold:

•
−→
d =

−→
d1;

• −→e =
−→
dm; and

• I |= ϕ(
−→
di ,
−−→
di+1) for all 1 ≤ i < m.

Example 4.1. Let Σ be an alphabet and consider the formula

ϕ(x1, x2, y1, y2) =
∨

a∈Σ

Qa(x1)⇔ Qa(x2) ∧ s(x1, y1) ∧ s(x2, y2)

26

and let

ψ =∃x, y.x > min∧s(y, x) ∧ TC2[ϕ](min, x, y,max)∧
∨

a∈Σ

Qa(y)⇔ Qa(max).

Then L(ψ) = {ww | w ∈ Σ∗}.

We consider also the deterministic transitive closure, with the ad-

ditional restriction that if ϕ(
−→
d ,−→e1) and ϕ(

−→
d ,−→e2) hold, then −→e1 = −→e2 .

Formally, the k-ary deterministic closure DTCk is defined in terms of
TCk as follows:

DTCk[ϕ(−→x ,−→y)] = TCk[ϕ(−→x ,−→y) ∧ ∀−→z .ϕ(−→x ,−→z)⇒ −→y = −→z].

Example 4.2. Let Σ be an alphabet and consider the formula

ϕ(x1, x2, y1, y2) =
∨

a∈Σ

Qa(x1)⇔ Qa(x2) ∧ s(x1, y1) ∧ s(y2, x2)

and let

ψ =∃x, y.x > min∧s(x, y) ∧ DTC2[ϕ](min,max, x, y)∧
∨

a∈Σ

Qa(y)⇔ Qa(x).

Then L(ψ) = {w←−w | w ∈ Σ∗}.

Note. The formula φ from Example 4.1 actually defines a deterministic
operator. Hence, changing TC for DTC would yield the exact same
language. Recall that 1-2DFA cannot accept the language {ww | w ∈
Σ∗}; however, 2-2DFA can.

We will now show that k-ary transitive closure can encode two-way
multihead automata.

Theorem 4.3. Let A be a 1-kFA. Then, there exists a first-order for-
mula with k-ary transitive closure ψ such that L(A) = L(ψ).

27

Proof. The main idea is that the variables in a first-order formula with
k-ary transitive closure can be seen as pointers to positions in the input
word. Thus, using k variables, it is possible to simulate the k heads of
the automaton.

Consider the formula

mv(p1h,m, p2h) =











s(p1h, p2h) if m = 1

p1h = p2h if m = 0

s(p2h, p1h) if m = −1.

We can then capture a movement of the k heads with the formula

mvk(−→p1,
−→m,−→p2) =

k
∧

l=1

mv(p1l,ml, p2l).

This formula is true iff the k heads were at position −→p1 and have a
movement of −→m cells to the right to reach position −→p2.

We can then caputure a transition of the automaton by the formula

tr(−→a ,−→m) =
k

∧

l=1

Qal
(p1l) ∧mvk(−→p1,

−→m,−→p2),

which is true iff such a move was made while the heads were reading
the symbols −→a .

We now use the same idea from Theorem 2.8 to encode a finite au-
tomaton with a FOL formula. Let A = (Q,Σ, I,∆, F) be a 2-kFA, we
construct an equivalent FOL formula with k-ary transitive closure χ.
For this, we recursively build formulas χn

ij(
−→p1 ,
−→p2), which are true iff

when A is started in state i with its heads positioned at −→p1, then A can
perform 0 or more transitions to reach state j and position its heads at
−→p2 , while not passing through states higher than n. Formally, we have

χ0
ij(
−→p1,
−→p2) =

∨

−→a ∈ (Σ ∪ {⊲,⊳})k,
(i,−→a , j,−→m) ∈ ∆

tr(−→a ,−→m) ∨

{

false if i 6= j,
−→p1 = −→p2 if i = j.

Note that this formula allows transitions without head movements, via
the last disjunction.

28

For the recursion, we can now set

χn
ij(
−→p1,
−→p2) =∃−→p3,

−→p4.(χ
n−1
in (−→p1 ,

−→p3) ∧ TCk[χ
n−1
nn](−→p3 ,

−→p4) ∧ χ
n−1
nj (−→p4 ,

−→p2))

∨ χn−1
ij (−→p1,

−→p2).

With these formulas we can now set

χ = ∃−→p1.
∨

q ∈ I
f ∈ F

χ
|Q|
q,f(
−−→
min,−→p1).

This formula states that if A is started with all the heads pointing at
min and in an initial state, then A can move to some head position −→p1

in a final state. This is exactly the condition for accepting the input,
and hence L(A) = L(χ).

Note. Using a similar argument, it can also be shown that 2-kDFA can
be encoded through FOL formulas with deterministic transitive closure.
Due to the restrictions of the deterministic operator, several details need
to be considered, which makes the proof long, but not more difficult.

Theorem 4.3 shows that every language accepted by a 2-kFA is also
accepted by a FOL formula with k-ary transitive closure. It now remains
to check whether the converse is also true, that is, whether for every
such formula there is an automaton accepting the same language.

In Section 2.2 it was shown that for k = 1 the converse does hold. The
proof presented there (see Theorem 2.8) depends on a result from Büchi
that does not generalize to multihead automata (namely, that MSOL
and non-deterministic automata have the same expressive power). This
means that we cannot reuse that proof in this more general setting.

To solve this problem, we introduce so-called k-regular formulas.
These are syntactic variants of (a subclass of) FOL formulas with k-
ary transitive closure, that intuitively generalize regular expressions.
We then show that the class of 2-kFA and k-regular formulas have the
same expressive power.

Definition 4.4. The set of k-regular formulas over an alphabet Σ is
the smallest set such that:

29

• tr(−→a ,−→m) is a k-regular formula, for all −→a ∈ (Σ ∪ {⊲,⊳})k and
−→m ∈ {−1, 0, 1}k ,

• if ϕ,ψ are k-regular formulas, then so are ϕ ◦ ψ,ϕ ∨ ψ, and ϕ∗.

The semantics of these expressions are given through a translation
to FOL+TCk. We define the translation T from k-regular formulas to
FOL+TCk inductively as follows:

• T (tr(−→a ,−→m)) =
∧k

l=1(Qal
(p1l)∧mv(p1l,ml, p2l)) (cf. Theorem 4.3),

• T (ϕ ◦ ψ) = ∃−→p3.(T (ϕ)[−→p2/−→p3] ∧ T (ψ)[−→p1/−→p3]), where θ[−→x /−→y] denotes
the substitution of all free occurrences of variables from −→x with
the respective constants or variables from −→y ,

• T (ϕ ∨ ψ) = T (ϕ) ∨ T (ψ),

• T (ϕ∗) = TCk[ϕ](−→p1 ,
−→p2).

Notice that the free variables in all these formulas are −→p1,
−→p2. The

language accepted by a k-regular formula ϕ is given by:

L(ϕ) = L(∃−→p2.T (ϕ)
[−→p1/

−−→
min]

).

An important thing to consider is that, despite its syntactical sim-
ilarity, it is not the case that L(ϕ ◦ ψ) = L(ϕ) ◦ L(ψ). Likewise,
L(ϕ∗) 6= L(ϕ)∗.

Using a construction similar to the proof of Theorem 4.3, it is possible
to show that for every 2-kFA A there is a k-regular formula ϕ with
L(A) = L(ϕ) (Exercise!).

Theorem 4.5. For every k-regular formula ϕ there is a 2-kFA A such
that L(ϕ) = L(A).

Proof. The proof follows the same idea used for building a non-determi-
nistic automaton that accepts a regular expression. For each subformula
of ϕ, we inductively define an automaton A that accepts the same lan-
guage, with the following properties:

• A has exactly one initial and one final state,

30

• there is no transition leading to the initial state, and

• there is no transition from the final state.

For the base case, that is for a formula of the form tr(−→a ,−→m), we have
an automaton having only two states and one transition [handwritten
image a)]. Clearly, this automaton satisfies the three conditions above
and accepts the desired formula.

We now look at the inductive step. Assume that we have automata A1

and A2 accepting ϕ and ψ, respectively, satisfying the three conditions
above. For each of the constructors we give an automaton that accepts
the corresponding formula:

• ϕ∨ψ: for this case, we want to choose which of the automata A1 or
A2 is used for accepting the input word. Thus, we can actually set
these automata independently, and get two initial and final states.
This, however, would violate the first condition of our automata.
Thus, what we do is to introduce two new states that will act as
the new initial and final states of the automaton, respectively, and
connect them via transitions that do not change the positions of
the heads [image b)].

It is easy to see that this automaton satisfies the three conditions,
and that it accepts the language defined by ϕ ∨ ψ.

• ϕ ◦ ψ: in this case we want to combine the two automata A1 and
A2 sequentially. This is easily done by including a new motionless
transition from the final state of A1 to the initial state of A2

[image c)].

• ϕ∗: this case is very similar to the previous one, but the sequential
use of automaton A1 must be able to repeat as many times as one
wants (even 0). Hence, we need again to introduce new states
that will now act as initial and final state, and add motionless
transitions to the automaton A1 [image d)].

Once again, it is easy to see that this automaton satisfies the three
conditions above and that it accepts the desired language ϕ∗.

31

Notice that k-regular formulas are intrinsically non-deterministic. In-
deed, not only the disjunction constructor, but also the star (given by
the transitive closure) yield a non-deterministic automaton. Although
it is potentially possible to redefine the ∗ operator to use the deter-
ministic transitive closure, this would not suffice for having a (directly)
deterministic automata construction. It is thus unclear which kinds of
restrictions one could impose to obtain a subclass of FOL+DTCk that
expresses exactly the languages accepted by deterministic multihead
automata.

This means that we have a precise logical characterization of the
languages accepted by non-detereministic two-way multihead automata,
but only a (possibly) over-characterization for the deterministic case.

32

5 Tree Walking Automata

We will now consider a special kind of automata that are able to recog-
nize tree languages. For simplicity, we will consider only binary trees.
It should be noted, however, that the ideas presented in this chapter
can be easily extended to any arbitrary (finite) arity.

Definition 5.1. Let Σ be an alphabet. A Σ-tree t is a mapping from
Nt ⊆ {1, 2}

∗ to Σ, where Nt is a finite, non-empty, prefix-closed set such
that for any v ∈ Nt it holds that v1 ∈ Nt iff v2 ∈ Nt. Nt is the set of
nodes of t.

Intuitively the elements in Nt represent the positions in the tree. ε
represents the root node and the nodes v1 and v2 are the left- and
right-successor of v, respectively. We force trees to be binary in the
sense that every node has either none or exactly two successors.

We assume that for every node we know whether it is the root node,
or a leaf node, and also which number of child it is. This is called
the type of the node. Formally, the type of a node is an element of
tp = {r, 1, 2} × {l, i}, where r stands for the root, 1 for a left son, 2 for
a right son, l for a leaf, and i for an internal (non-leaf) node [leaf nodes
are those that have no successors; i.e., v ∈ Nt is a leaf node iff v1 /∈ Nt].

We will introduce the notion of a tree-walking automaton. Basically,
this automata are a straightforward generalization of two-way automata
capable of dealing with trees as inputs. Hence, a head of the automaton
can still move backwards (to the unique parent of the corresponding
node, if it is not the root), stay at the same node, or move forward.
However, in this last case, there are two possible options: either move
to the left- or the right- successor. We will represent this by a movement
of 1 or 2, respectively.

Definition 5.2. A k-head tree-walking automaton is a tuple of the form
A = (Q,Σ, I,∆, F), where Q,Σ, I and F are as in multihead automata

33

(over words) and

∆ ⊆ Q× tpk × Σk ×Q× {−1, 0, 1, 2}k

is the transition relation.

As seen by this ∆, the transitions of the automaton do not only
depend on the symbols being read, but also on the type of the nodes
at which the heads of the automaton are looking. This enables us to
distinguish whether the automaton is on the first or second branch of a
subtree, and removes the need of having initial and final markers (⊲,⊳)
used in multihead word automata.

The notion of deterministic automaton requires also to take care of
the types. Formally, the automaton A is deterministic if for every
(q,
−→
t ,−→a) ∈ Q × tpk × Σk there is at most one transition of the form

(q,
−→
t ,−→a , q′,−→m) ∈ ∆.

As for the word case, a configuration of A on a tree t over Σ is a
pair (q,−→u) where q ∈ Q and −→u is a k-tuple of nodes of t indicating
the positions of the k-heads. A run on t is a sequence of configura-
tions where every two consecutive configurations are consistent with
the transition relation ∆. Such a run is accepting if it starts with a con-
figuration (q0,

−→ε) with q0 ∈ I and finishes with a configuration (qm,
−→u)

with qm ∈ F .

Example 5.3. Let Σ = {a, b}, and consider the language L of all trees
where no leaf node is labeled with a.

The language L is accepted by the following one-head tree-walking
automaton [hand-written page]. Notice that the automaton is even
deterministic. The idea is that it traverses systematically the whole
input tree, to ensure that no leaf is left unchecked, but since there are
no transitions available if the leaf being read is labeled with a, this
traversal fails whenever t is not in L. As a particular example, consider
the accepting run on the input tree [a) hand-written]

There exist several characterizations of regular tree languages. Here
we use the one based on FOL with transitive closure: a tree langue L is
regular iff there is a FOL+DTC formula ϕ with two successor functions
such that L(ϕ) = L.

34

Notice that we can also use the abbreviations leaf(x), root(x) that
represent that x is a leaf or a root node, respectively. Using the same
transformation from (word) automata to FOL+DTC from Section 2.2,
but now considering both successor functions to distinguish between the
first and second child of a node, one can prove that every tree language
accepted by a one-head tree walking automaton is regular. However,
the converse is not true. That is, there are regular languages that are
not accepted by any one-head TWA.

Example 5.4. Let Σ = {a, b}. We call an internal node v in a tree t
branching if the left and right subtrees of v both contain a leaf labeled
with a. Consider the language L consisting of all trees where no internal
node is labeled with a and such that the path to each a-labeled leaf
contains an even number of branching nodes. [see handwritten example]

The language is regular. To show this, we will construct a FOL+DTC

formula that accepts it. Consider the formula branch(y) that specifies
that y is a branching node:

branch(y) =∃z1, z2.leaf(z1) ∧ leaf(z2) ∧ z1 >1 y ∧ z2 >2 y∧

Qa(z1) ∧Qa(z2).

We can then define the functions ψ1(x, y) and ψ2(x, y) that express that
y is the lowest, and second lowest branching ancestor of x, respectively:

ψ1(x, y) =y < x ∧ branch(y)∧

∀z.y < z < x⇒ ¬branch(z),

ψ2(x, y) =∃z.ψ1(x, z) ∧ ψ1(z, y).

Notice that both ψ1 and ψ2 are functional. We can now define the
formula

ϕ = ∀x.Qa(x)⇒ leaf(x) ∧ ∃y.DTC[ψ2](x, y) ∧ ¬∃z.ψ1(y, z)

that accepts the language L.
However, this language cannot be accepted by any 1-TWA (the proof

is too technical and complex and will not be presented in this lecture).

Once we allow the use of multiple heads, then we get again out of the
realm of regular languages. Let L be a word language and consider the
tree language

35

Lt = {t | the left-most branch of t is labeled with a word w ∈ L}.

It is easy to see that L is accepted by a 2-kFA iff Lt is accepted by a
k-TWA without transitions to the right-child (that is, using only head
movements in {−1, 0, 1}). In fact, the same automaton can be used to
accept both languages. Thus, for instance, for the language L = {ww |
w ∈ Σ∗}, Lt is recognized by a 2-TWA but clearly Lt is not regular.

The relation between k-head TWA and k-ary transitive closure trans-
lates directly from the word case to the tree case: every language ex-
pressible through a (deterministic) k-TWA is also expressible through
FOL with k-ary (deterministic) TC. However, the converse is not clear.
Again, for non-deterministic automata and operators, one could define
a notion of k-regular formulas that exactly characterize the languages
recognized by k-TWA. However, the deterministic case would still be
left unclear.

We will now follow the opposite approach. Rather than restricting the
class of formulas that can be used, we further generalize the notion of
k-head automata. This generalization allows us to mark specific nodes
of the tree that have been visited by the automaton, and access and
modify this marks during the execution of the automaton. Thus, one
can have more than just the local information of what the automaton
is currently looking at. This markings are kept in the form of so-called
“pebbles” that the automaton can drop and retrieve in a LIFO fashion.
We will see that automata with this kind of pebbles fully characterize
FOL+TC.

Definition 5.5. A k-head tree-walking pebble automaton is a tuple of
the form A = (Q,Σ, I,∆, F,X) where Q,Σ, I and F are as usual and
X is a finite set of pebbles. To define the transition relation, we first
introduce the sets of tests and consequences:

tests =(tpk × Σk) ∪ (X × {i,−i | 1 ≤ i ≤ k}),

conqs ={−1, 0, 1, 2}k ∪ {rtrv} ∪ {di | 1 ≤ i ≤ k}.

Then,
∆ ⊆ Q× tests×Q× conqs

is the transition relation.

36

Intuitively, there are two kinds of situations that can be verified to de-
cide the applicability of a transition: we can either test that the k heads
are reading a sequence of symbols from Σ (as in regular automata), or
test whether the i-th head is positioned (or not) at the location of a
pebble x ∈ X. These different possibilities are expressed through the
set tests.

As for the outcome of a transition application, we have a similar
dichotomy: one can decide to change the positions of the heads, or
perform some pebble-related action. In the latter case, we can either
retrieve the last pebble (expressed through rtrv) or to drop a new pebble
in the current position of head i (di).

The semantics of these automata is also defined by means of config-
urations. In this case, a configuration of an automaton A on a tree t
over Σ is a triple (q,−→u , α), where q ∈ Q is a state, −→u is a tuple of
k nodes of t indicating the positions of the heads and α is a sequence
of pebbles dropped at their positions: α = (x1, w1) . . . (xm, wm) where
xi ∈ X,wi ∈ Nt.

Two configurations (q,−→u , α), (q′,−→v , β) are compatible with A, t if
there is a transition (q, tst, q′, cq) ∈ Q× tests×Q× conqs such that











(type(−→u), t(−→u)) = tst if tst ∈ tpk × Σk

(x, ui) ∈ α if tst = (x, i)

(x, ui) /∈ α if tst = (x,−i),

and










−→v = −→u + cq, α = β if cq ∈ {−1, 0, 1, 2}k

−→v = −→u , α = β(xm, wm) if cq = rtrv, α = (x1, w1) . . . (xm, wm)
−→v = −→u , β = α(xm+1, ui) if cq = di and |α| = m.

A run un t is a sequence of configurations where every two consec-
utive configurations are compatible with A, t. It is called accepting if
it starts with a configuration (q0,

−→ε , ε) with q0 ∈ I and finishes with a
configuration (qn,

−→u , α) with qm ∈ F .
Notice that this semantics guarantees that the pebbles are used in

a nested (LIFO) manner: the command “retrieve” can only pick up
the last pebble that was set down, and the command for setting a new

37

pebble cannot express which specific element of X is used, but it must
be the next one available.

Example 5.6. Consider the language over Σ = {a, b} that consists
of all trees having at least one branching node labeled with a. We
show that we can easily accept this language with a non-deterministic
1-TWA with one pebble. The automaton non-deterministically choses
an internal node labeled with a, marks it with a pebble, and then (non-
deterministically) checks that both its right- and left-subtrees contain
a leaf labeled with a. [hand-written example]

Notice that this same language can also be accepted by a deterministic
1-TWA with one pebble. The main difference is that the automaton
must test each node systematically to decide whether it is branching
or not. For that purpose, the automaton must repeatedly drop and
retrieve the pebble at (possibly all) the internal nodes labeled with a.

The language L from Example 5.4 is accepted by a deterministic 1-
TWA with two pebbles. The idea is to systematically place the first
pebble on each a-labelled leaf. For each such position, we follow the
path upwards to the root counting the number of branching nodes. To
test whether a node is branching, we only need to drop the second pebble
at the node and check that its other subtree contains a leaf labeled with
a. The pebble is used to recognize that we have returned to the desired
node. We then pick up this second pebble and use it for testing the
predecessor node. Once the root is reached, we reject if there is an
odd number of branching nodes in a path, otherwise, we return to the
position of the first pebble and continue. (Exercise!)

We now show that adding pebbles suffices for representing all FOL
formulas with transitive closure. We first show this result for the de-
terministic case, which was the most problematic one. Then we explain
the changes that must be made for the non-deterministic case.

Theorem 5.7. Let k ≥ 1. For every FOL+DTCk formula ϕ there is a
deterministic k-TWA with pebbles A such that L(ϕ) = L(A).

Proof. The proof is by induction on the structure of the formula. For
each FOL+DTCk formula we construct a deterministic TWA with nested
pebbles that always halts (with all its heads at the root). This require-
ment will be specially useful when dealing with negation, but also for

38

the disjunction and existential quantification cases. Informally, each
variable of the formula will can be seen as a pebble for the automaton.
For the k-ary transitive closure we will need 3k pebbles for testing the
formula (2k for marking the initial and final tuples, and k for testing
the transitive closure).

Notice that subformulas of ϕ may contain free variables; hence, we
extend the notion of recognizing a tree with an automaton: a valua-
tion of the free variables is fixed by putting pebbles on the tree (one
per variable), and the automaton should evaluate the formula according
to this assignment. Formally, let φ(x1, . . . , xn) be a formula with free
variables x1, . . . , xn. The automaton A for φ should check whether
t |= φ(u1, . . . , un) for nodes u1, . . . , un in a tree t as follows: it is
started in the initial state with all heads at the root of the tree t,
where u1, . . . , un are marked with pebbles x1, . . . , xn, respectively. Dur-
ing the computation, A may use additional pebbles (in the same LIFO
way) and it may test x1, . . . , xn, but it is not allowed to retrieve these.
The computation should halt again with all heads at the root with
the original configuration of pebbles. The halting state is accepting iff
t |= φ(u1, . . . , un).

The base case, for the atomic formulas, is a straightforward con-
struction of single head automata. For instance, consider the formula
s1(x, y). The automaton searches the node that has pebble x and then
decides whether it has a child (or is a leaf), and moves to the first child,
where it checks that the pebble y is present. Equality, root, leaf, and
other atomic formulas can be checked similarly.

Let now φ = ¬φ1. Then, we can take the original (deterministic)
automaton for φ1 and change the final states to the complementary set.
Notice that this only works due to our assumption that the automata
being built are always halting. Conjunction and disjunction are also
simple. Since we assume that our automata always halt at the root
node, we can run the two automata for the subformulae sequentially.

For the quantification ∀x.φ1, the automaton systematically traverses
through the tree (with one head) and places the pebble x at each po-
sition, returning then to the root and running the automaton for φ1.
If this accepts, the automaton then searches the pebble x and moves
it to the next position, effectively testing all possible positions. The
existential quantification is treated similarly.

39

The only remaining constructor is the DTCk[φ1](
−→x ,−→y) with φ1 func-

tional. Here we can use the automaton that accepts φ1 repeatedly to
move through the transitive closure. However, we cannot do this di-
rectly, as we can end up in a loop, which will contradict the assumption
that the automaton always halts. Notice that if, instead of testing this
directly we do it backwards, then any such loop must include −→y . Hence,
we can easily verify whether a loop exists or not. This is the only case
where we will need the k heads of the automaton.

Consider the formula φ = DTCk[φ1](
−→x ,−→y). Given a tree that has 2k

nodes marked by pebbles−→x ,−→y , we have to construct an automaton that
decides whether we can connect −→x and −→y by a series of intermediate

tuples satisfying φ1. We use then 3k pebbles
−→
x′ ,
−→
y′ ,
−→
z′ in the following

way. The pebbles
−→
y′ are set first at the position of −→y , and

−→
x′ are

set systematically in all possible positions to check whether φ1(
−→
x′ ,
−→
y′)

holds. When we find an adequate tuple
−→
x′ we move all the pebbles

from
−→
y′ to that position and repeat. If no such tuple exist, then we

have seen the wrong path of φ1 predecessors, and hence we need to find

the next possible path – unless
−→
y′ equals −→y . To do this, we set

−→
z′

at the (unique) positions where φ1(
−→
y′ ,
−→
z′) holds, and then traverse all

positions to find the next tuple such that φ1(
−→
x′ ,
−→
z′) is satisfied (for this

we need some kind of total order between tuples of nodes; for instance
a lexicographical order can be used). During all this tests we have to

take care of never setting
−→
x′ in the same positions as −→y so as to avoid

reaching a loop. This process will eventually find out that
−→
x′ is at the

same position as −→x (in which case, accepts) or fails to find a new tuple
of nodes that satisfy the inverse relation of φ1 (and rejects).

Notice that, although the number of heads is fixed by the arity of the
transitive formulas, the number of pebbles depends on the structure of
the formula: we have 1 pebble for each nested quantifier, and 3k for
each nested transitive closure.

If we remove the determinism in the transitive closure operator (i.e.,
we do not require the parameter to be functional), we need to restrict to
only positive occurrences of the TCk operator; that is, where the TCk is
in the scope of an even number of negations (this is equivalent to asking

40

that negation is applied to atomic formulas only).
In this case, we can build a non-deterministic k-TWA with pebbles

as follows: atomic formulas, their negations, conjunction and univer-
sal quantification are treated as above. For disjunction and existential
quantification, we can use non-determinism in the obvious way. For
TCk[φ1](

−→x ,−→y), we now use the non-determinism to check for a se-
quence of φ1-connected tuples. Since we are using non-determinism for
disjunction and existential quantification, and negation appears only in
atomic formulas, we do not need to worry about having non-terminating
sequences. Non-determinism will make sure that, if the transitive clo-
sure holds, the automaton will find it. Thus, we also get the following
result.

Theorem 5.8. Let k ≥ 1. For every FOL+posTCk formula ϕ there is
a k-TWA with pebbles A such that L(ϕ) = L(A).

We have previously shown that for each automaton we can build a
formula that accepts the same language. However, our previous proof
did not consider the presence of pebbles. Hence we need to extend our
proof to deal with these new elements.

Theorem 5.9. Let k ≥ 1. For every k-TWA with pebbles A there is a
FOL+posTCk formula ϕ such that L(ϕ) = L(A).

Proof. LetA = (Q,Σ, I,∆, F,X) be a k-TWA with pebbles. We assume
the following w.l.o.g.:

• there are no transitions from final states

• I ∩ F = ∅

• for any transition (q, tst, q′, di) ∈ ∆, there is no transition of the
form (q′, tst, q′′, rtrv) (that is, we cannot retrieve a pebble imme-
diately after it has been dropped)

• final states can only be reached when all heads are looking at the
root node.

Furthermore, we assume that the states can identify the number of
pebbles that have been dropped; that is, if X = {x1, . . . , xn}, then

41

we can partition the set Q in n sets Q0, Q1, . . . , Qn where Ql consists
of states where l pebbles are still available, and I ∪ F ⊆ Qn. In other
words, we can consider that A consists of n+1 “levels” An, . . . ,A0 such
that each Al (defined by the set of states Ql) is a k-TWA with l pebbles
(x1, . . . , xl), while the rest of the pebbles have a fixed position in the
tree. The intuition is that Al works as a TWA that can drop a single
pebble xl and then query Al−1 where to move (and to which state),

and then retrieves the pebble xl again. The formula χ
(l)
q,q′(
−→u ,−→v) is true

if one can perform a computation of Al from configuration (q,−→u , α)
to configuration (q′,−→v , α). [Notice the difference with the previous
formulas χ]

Consider first the case for which the only consequences of a transition
are to move the heads of the automaton (that is, there are no “drop”
or “retrieve” instructions). In this case, we are fixed in the same level
automaton Al. Hence, we can simulate any automata instructions with
a FOL+DTCk formula as done in the proof of Theorem 4.3. The only
case that has not been covered there is when the test of the transition
checks for the i-th head to be where a pebble xm (or not). This is easily
done with the following formulas, respectively:

p1i = xm, ¬(pli = xm).

Hence, the only instructions we have to deal with are the dropping and
retrieval of pebbles.

Since we have assumed that all initial and final states are in Qn, we
have to start with an execution of automaton An, and, whenever we
drop a pebble in one of these automata, we have to eventually retrieve
it. Thus, we can think of this as a step where we drop a pebble, allow
the automaton with one less available pebble work, and then retrieve
the pebble again.

Thus, the formula χ
(l+1)
p,q (−→u ,−→v) is (also) true if Al+1 can drop a

pebble to reach state p′, χ
(l)
p′,q′(
−→u ,−→v) holds, where the free variable xl

in that formula is replaced by ui, and Al can retrieve a pebble to reach
state q. More formally, if

∨

(p,tst1,p′,di),(q′,tst2,q,rtrv)

tst1(
−→u) ∧ tst2(

−→v) ∧ χl
p′,q′(
−→u ,−→v)[xl/ui].

42

We can then construct the formula ϕ given by

ϕ =
∨

p∈I,q∈F

χ(n)
p,q (−→ε ,−→ε),

which is true if the automaton can reach a final state from an initial
state with all the heads pointing at the root. This formula is correct
given the assumptions made at the beginning of this proof.

Notice that with this construction, we have only added negations
at the atomic formulas (to test that a node is at the place of a given
pebble), and hence have no negative use of transitive closure. Thus
ϕ ∈ posTCk.

It is also possible to prove this result for deterministic automata and
deterministic transitive closure.

Theorem 5.10. Let k ≥ 1. For every deterministic k-TWA with peb-
bles A there is a FOL+DTCk formula ϕ such that L(ϕ) = L(A).

Notice that these both last theorems include the case for words, in
which we were initially interested. Thus, in particular we know that
two-way (deterministic) k-head automata with pebbles and k-ary (de-
terministic) transitive closure have the same expressive power.

43

6 Descriptive Complexity

The usual approach to computational complexity is in terms of the time
and space necessary to decide a given property P. One can also ask the
dual question: how difficult it is to express the property P? As it turns
out, these two notions (deciding and expressing) are very closed related,
when one considers on the one hand logic, and on the other ordered
structures. If we consider the structures and logic we have dealt with
in this lecture, we get an interesting characterization.

Let L be the class of all problems solvable in deterministic logarithmic
space, and NL its non-deterministic counterpart. We can first charac-
terize these classes by means of two-way multihead automata.

Theorem 6.1. •
⋃∞

k=1 k-2DFA= L,

•
⋃∞

k=1 k-2FA= NL.

On the other hand, we obtain a characterization of the same classes
by means of first-order logic with transitive closure.

Theorem 6.2. •
⋃∞

k=1FOL+DTCk = L,

•
⋃∞

k=1FOL+TCk = NL.

These two theorems together imply, for instance, that if we do not
fix the number of heads of the automata, then the addition of pebbles
does not add to the expressivity of multihead automata.

One reason for studying these classes of automata (and logic) is to
try to shine light over the L = NL problem (similar to the P = NP
problem), which is still open.

If, for instance, one could find a language that is accepted by a multi-
head nondetereministic automaton with pebbles, but not by any multi-
head deterministic automaton (without pebbles), then we could answer
the question negatively. Alternatively, if one can prove that 2-kFA can

44

be determinized (possibly by using more heads), then we could answer
the question possitively.

Several open problems in complexity theory can be (and have been)
solved through descriptive complexity approaches, the L=NL being only
one of them.

45

