

Faculty of Computer Science Institute for Theoretical Computer Science, Chair for Automata Theory

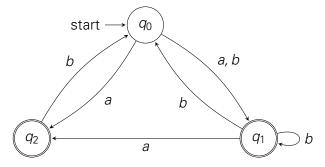
Selected Topics in Automata Theory

Exercise Sheet 1

Dr. Rafael Peñaloza / Dipl.-Math. Felix Distel Summer Semester 2010

Exercise 1

Let the non-deterministic automaton $\mathcal{A} := (\{q_0, q_1, q_2\}, \{a, b\}, \{q_0\}, \Delta, \{q_1, q_2\})$ be given by the following transition system.



Apply the power set construction to A in order to obtain a *deterministic* automaton that accepts the same language as A.

Exercise 2

Let $\Sigma = \{a, b\}$. Let L_1 be the language defined by

 $L_1 = \{ w \in \Sigma^* \mid \text{ the number of occurrences of } a \text{ in } w \text{ is odd} \}$

- a) Give a regular expression *r* such that $L(r) = L_1$.
- b) Construct a finite automaton A such that $L_1 = L(A)$.

Exercise 3

Let $\Sigma = \{a, b\}$. For each of the following regular expressions r_i show that $L(r_i)$ is star-free by giving a star-free description of it (Example: $ab^* = a \cdot (\overline{\emptyset} \cdot a \cdot \overline{\emptyset})$).

- a) Σ^*
- b) $aaa\Sigma^* + b^*$
- c) $a^*b^* + b^*a^*$
- d) (*abb**)*

Exercise 4

For each of the languages $L(r_i)$ from Exercise 3 give a first-order formula φ_i such that either $L(r_i) = L(\varphi_i)$ or $L(r_i) = L(\varphi_i) \cup \{\varepsilon\}$.