

Faculty of Computer Science Institute for Theoretical Computer Science, Chair for Automata Theory

Selected Topics in Automata and Logic

Exercise Sheet 2

Dr. Rafael Peñaloza / Dipl.-Math. Felix Distel Summer Semester 2010

Exercise 1

Let Σ and Γ be alphabets and $L \subseteq \Sigma^*$. Prove or refute the following implications:

- a) $L \in \mathbf{SF}_{\Sigma} \Rightarrow L \in \mathbf{SF}_{\Sigma \cup \Gamma}$
- b) $L \in \mathbf{SF}_{\Sigma \cup \Gamma} \Rightarrow L \in \mathbf{SF}_{\Sigma}$

Exercise 2

A finite one-way automaton $\mathcal{A} = (Q, \Sigma, I, \Delta, F)$ is called a *looping automaton* if Q = F, i.e. all states are final states.

- a) Prove that there cannot be a looping automaton that accepts the language $(aa)^*$.
- b) Assume that we only allow inputs that start with \triangleright and end with \triangleleft , and that \triangleright and \triangleleft may not occur in any other position. Give a looping automaton that accepts $\triangleright(aa)^* \triangleleft$.

Exercise 3

Describe the languages $L(A_i)$, $i \in \{1, ..., 3\}$, that are accepted by the following two-way automata A_i and give a regular expression for them.

a) $\mathcal{A}_1 = (\{q_0, q_1\}, \{a, b\}, \{q_0\}, \Delta, \{q_0\})$

b) $\mathcal{A}_2 = (\{q_0, q_1\}, \{a, b, c\}, \{q_0\}, \Delta, \{q_1\})$

c) $\mathcal{A}_3 = (\{q_0, q_1, q_2\}, \{a, b\}, \{q_0\}, \Delta, \{q_2\})$

Exercise 4

Let $\mathcal{A} = (\mathcal{Q}, \Sigma, I, \Delta, F)$ be a deterministic, finite, one-way automaton that accepts the language *L*. Let

$$L = \{a_n a_{n-1} \cdots a_1 \mid a_1 a_2 \cdots a_n \in L\}$$

be the language of all words from *L* read backwards. Give a deterministic, finite, two-way automaton that accepts \overleftarrow{L} .