

Faculty of Computer Science Institute for Theoretical Computer Science, Chair for Automata Theory

Selected Topics in Automata and Logic

Exercise Sheet 3

Dr. Rafael Peñaloza / Dipl.-Math. Felix Distel Summer Semester 2010

Exercise 1

Construct two-way automata A_i , $i \in \{1, ..., 3\}$, that accept the following languages \mathcal{L}_i .

- a) $L_1 \subseteq \{a, b\}^*$, $L_1 = a\Sigma^*$,
- b) $L_2 \subseteq \{a, b\}^*$, $L_2 = \{w \mid \text{in } w \text{ every } b \text{ is preceded by an } a\}$,
- c) $L_3 \subseteq \{a\}^*$, $L_3 = a(aa)^* \cup aa$.

Try not to use more states than necessary.

Exercise 2

Let $\mathcal{A} = (\{q_0, q_1\}, \{a, b, c\}, \{q_0\}, \Delta, \{q_1\})$ be the two-way finite state automaton that is defined by the following transition relation.

Using the construction from Theorem 2.4 from the lecture construct a non-deterministic one-way automaton \overline{A} that accepts the complement language $\overline{L(A)}$.

Exercise 3

Provide for each of the following languages an MSO-formula as well as a formula using first-order logic with transitive closure.

- a) ((*ab*)²)*
- b) $L = \{w \mid a \text{ occurs an even number of times in } w\}$

Exercise 4

Let $\mathcal{A} = (Q, \{a\}, \{q_{00}\}, \Delta, \{q_f\})$ with $Q = \{q_{00}, q_{01}, q_{10}, q_{11}, q_{20}, q_{21}, q_{22}, q_{23}, q_{24}, q_f\}$ be the *deterministic* two-way automaton defined by the following transition relation.

- a) Give a regular expression for the language L(A) that is accepted by A.
- b) What is the minimum number of states of a non-deterministic one-way automaton that accepts L(A)? Prove your claim.