

Faculty of Computer Science Institute for Theoretical Computer Science, Chair for Automata Theory

Selected Topics in Automata and Logic

Exercise Sheet 5

Dr. Rafael Peñaloza / Dipl.-Math. Felix Distel Summer Semester 2010

Definition

A *two-way automaton with k heads* is a tuple of the form $\mathcal{A} = (\mathcal{Q}, \Sigma, I, \Delta, F)$, where \mathcal{Q}, Σ, I and F are as in regular two-way automata, and $\Delta \subseteq \mathcal{Q} \times (\Sigma \cup \{\triangleright, \triangleleft\})^k \times \mathcal{Q} \times \{-1, 0, 1\}^k$ is the transition relation.

A configuration of a two-way k-head automaton \mathcal{A} is an element of $Q \times \mathbb{N}^k$. A run of \mathcal{A} on a word $w = a_1 \dots a_n \in \Sigma^*$ is a sequence of configurations $(q_0, j_{01}, \dots, j_{0k}) \dots (q_m, j_{m1}, \dots, j_{mk})$ such that

- $q_0 \in I$, and
- $j_{0\ell} = 0$ for all ℓ , $1 \le \ell \le k$, and
- $0 \le j_{i\ell} \le n+1$ for all $i, 0 \le i \le m$, and all $\ell, 1 \le \ell \le k$, and
- $(q_i, (a_{j_{i1}}, \dots, a_{j_{ik}}), (j_{i+1,1} j_{i1}, \dots, j_{i+1,k} j_{ik})) \in \Delta$ for all $i, 0 \le i \le m$.

A run is *accepting* if $q_m \in F$.

Exercise 1

Describe the languages that are accepted by the following two-way automata with 2 heads.

a) $\mathcal{A}_1 = (\{q_0, q_1, q_2\}, \{a, b\}, \{q_0\}, \Delta, \{q_2\})$, where Δ is given by the following relation (where X and Y range over all symbols from $\Sigma \cup \{\triangleright\}$).

b) A₁ = ({q₀, q₁, q₂}, {a, b}, {q₀}, Δ, {q₂}), where Δ is given by the following relation (where X ranges over all symbols from Σ ∪ {▷}, and Y ranges over all symbols from Σ).

Exercise 2

Give formal grammars for the languages from Exercise 1. What is the least Chomsky Type of these grammars?

Exercise 3

Construct two-way multihead automata that accept the following languages.

- a) $L_1 = \{a^n b^n \mid n \in \mathbb{N}\}$
- b) $L_2 = \{w \overleftarrow{w} \mid w \in \{a, b\}^*\}$

Exercise 4

Let $\varphi(x, y)$ be a first-order formula with 2 free variables. Let ψ be the formula $\psi(x, y) = \text{TC}[\varphi](x, y)$ and let ψ' be the formula $\psi'(x, y) = \text{DTC}[\psi](x, y)$. Give a regular expression for $L(\psi'(\min, \max))$. Prove your claim.