

Faculty of Computer Science Institute for Theoretical Computer Science, Chair for Automata Theory

Selected Topics in Automata and Logic

Exercise Sheet 8

Dr. Rafael Peñaloza / Dipl.-Math. Felix Distel Summer Semester 2010

Exercise 1

Let G_2 , C_m , D_m , E_m and F_m be languages as defined in the lecture. Show that $G_2 \cup C_m$ satisfies the conditions of Lemma 3.11, i.e.

- $C_m \cup D_m \subseteq G_2 \cup C_m$, and
- $(G_2 \cup C_m) \cap (E_m \cup F_m) = \emptyset$

Exercise 2

A stateless multihead automaton is a multihead automaton with only one non-final state.

Let \mathcal{A} be a 2-*k*FA. Is there a number $k' \in \mathbb{N}$ such that $L(\mathcal{A})$ can be accepted by a stateless 2-*k*'FA?

Exercise 3

Let $k \in \mathbb{N}$ be fixed and let Σ be a finite alphabet. Show that the class of languages over Σ that can be accepted by a one-way k-head non-deterministic finite automaton (1-*k*FA) is

- a) closed under finite union, and
- b) not closed under intersection, and
- c) not closed under concatenation.

Hint: For proving Part b try to find two languages *L* and *L'* that can both be accepted by a 1-*k*FA that satisfy $L \cap L' = L_m$ for $m = 1 + \binom{k}{2}$.

For proving Part c you can use your result from Part a.