

Faculty of Computer Science Institute for Theoretical Computer Science, Chair for Automata Theory

Selected Topics in Automata and Logic

Exercise Sheet 10

Dr. Rafael Peñaloza / Dipl.-Math. Felix Distel Summer Semester 2010

Exercise 1

Let L_k be the set of all languagues that can be described using a first order logic with *k*-adic transitive closure. Prove or disprove the following statements.

- a) L_k is closed under finite union.
- b) L_k is closed under intersection.
- c) L_k is closed under complement.

Exercise 2

Let $\Sigma = \{a\}$ be a unary alphabet. By L_{2-kFA} denote the set of all languages that can be accepted by a 2-*k*FA. Prove or disprove the following statement. There is a number k_0 such that

$$\bigcup_{k\in\mathbb{N}}L_{2\text{-}k\text{FA}}=L_{2\text{-}k_0\text{FA}}.$$

Exercise 3

Give formulas from first order logic with *k*-adic transitive closure that describes the following languages.

• $L_1 = \{w \overleftarrow{w} wx \mid w \in \Sigma^*, x \in \Sigma\}$

•
$$L_2 = \overline{\{w \overleftarrow{w} \mid w \in \Sigma^*\}}$$

Exercise 4

Give two formulas with two free variables $\varphi_1(a, b)$ and $\varphi_2(a, b)$ such that $\varphi_1(a, b)$ or $\varphi_2(a, b)$ is true iff the subword that starts at position *a* and ends at position *b* is in L_1 or L_2 , respectively.

How can you use φ_1 and φ_2 to describe the languages $L_1 \cdot L_2$ and $L_2 \cdot L_1$?