Notice
The solutions to Exercise 3 and 5 from Exercise Sheet 11 will be discussed during this week’s tutorial session.

Exercise 1
For a tree t over the alphabet $\Sigma = \{a, b\}$ let $t(1)$ and $t(2)$ denote the subtrees of t that are rooted in the nodes 1 and 2, respectively (provided that they exist). Let $L \neq$ be the language of all trees t where $t(1)$ and $t(2)$ exist and $t(1) \neq t(2)$.

$$
\begin{array}{c}
\epsilon \\
t(1) \\
t(2)
\end{array}
$$

Give a 2-TWA (without pebbles) that accepts $L \neq$.

Exercise 2
Let L be the language of all trees over $\Sigma = \{a, b\}$ such that
- no internal node is labelled with a, and
- every path to an a-labelled leaf contains an even number of branching nodes.

Give a 1-TWA with one pebble, that accepts \overline{L}.