

Faculty of Computer Science Institute for Theoretical Computer Science, Chair for Automata Theory

Description Logics

Exercise Sheet 2

Dr. Anni-Yasmin Turhan / Dipl.-Math. Felix Distel Summer Semester 2011

Exercise 1

Extend the mapping τ_x of \mathcal{ALC} -concept descriptions to first-order formulas given in the lecture to the description logic \mathcal{ALCQ} , which augments \mathcal{ALC} with qualified number restrictions.

Exercise 2

Recall that the description logic \mathcal{ALC} is equipped with the concept constructors negation (\neg), conjunction (\square), disjunction (\sqcup), existential restriction ($\exists r.C$), and universal restriction ($\forall r.C$). Each subset of this set of constructors gives rise to a fragment of \mathcal{ALC} .

Identify all minimal fragments that are equivalent to \mathcal{ALC} in the sense that for every \mathcal{ALC} -concept, there is an equivalent concept in the fragment.

Two concepts are equivalent iff the concepts have the same extension in every interpretation.

Exercise 3

Consider the (graphical representation of the) interpretation \mathcal{I} with $\Delta^{\mathcal{I}} = \{d, e, f, g\}$:

For each of the following \mathcal{ALCNI} -concepts *C*, list all elements *x* of $\Delta^{\mathcal{I}}$ such that $x \in C^{\mathcal{I}}$:

- a) $A \sqcup B$
- b) ∃*s.*¬A

- c) ∀*s.A*
- d) $(\geq 2s)$
- e) ∃*s.*∃*s.*∃*s.*∃*s.*A
- f) $\forall s^{-1}. \exists s. \exists s. \exists s. A$
- g) $\neg \exists r.(\neg A \sqcap \neg B)$
- h) $\exists s.(A \sqcap \forall s. \neg B) \sqcap \neg \forall r. \exists r.(A \sqcup \neg A)$

Exercise 4

Revisit the procedure for expanding TBoxes given in the proof of Proposition 2.6. Prove that

- a) this procedure always terminates, and
- b) that it returns a TBox that is equivalent to its input.

Hint for proving termination: count, for each concept name *A*, the number of concept names (directly or indirectly) used in the definition of *A*.

Exercise 5

Consider the TBox

$$\mathcal{T} = \{ \neg (A \sqcup B) \sqsubseteq \bot, A \sqsubseteq \neg B \sqcap \exists r.B, D \sqsubseteq \forall r.A, B \sqsubseteq \neg A \sqcap \exists r.A \},$$

the ABox

$$\mathcal{A} = \{ r(a, b), r(a, c), r(a, d), r(d, c), (B \sqcap \forall r.D)(a), E(b), (\neg A)(c), (\exists s. \neg D)(d) \}$$

and the knowledge base \mathcal{K} = (\mathcal{T} , \mathcal{A}). Check for

- a) the TBox ${\cal T}$
- b) the ABox ${\cal A}$ and
- c) the knowledge base $\ensuremath{\mathcal{K}}$

whether it has a model. If it has one, specify such a model. If it does not have a model, explain why.