

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Description Logics

Exercise Sheet 3

Dr. Anni-Yasmin Turhan / Dipl.-Math. Felix Distel Summer Semester 2011

Exercise 1

Proof that existential restrictions are monotonic, i.e. show

$$C \sqsubseteq_{\mathcal{T}} D \rightarrow \exists r. C \sqsubseteq_{\mathcal{T}} \exists r. D.$$

Exercise 2

Consider the ABox

 $\mathcal{A} = \{ A(d), A(e), A(f), B(f), r(d, e), r(e, g), s(e, f), s(g, g), s(g, d) \}$

with the following graphical representation.

For each of the following \mathcal{ALC} -concepts *C*, list all individuals that are instances of *C* w.r.t. \mathcal{A} . Compare your results to Exercise 3 from Sheet 2.

- a) $A \sqcup B$
- b) ∃*s.*¬A
- c) ∀*s.A*
- d) ∃*s*.∃*s*.∃*s*.∃*s*.A
- e) $\neg \exists r.(\neg A \sqcap \neg B)$
- f) $\exists s.(A \sqcap \forall s. \neg B) \sqcap \neg \forall r. \exists r.(A \sqcup \neg A)$

Exercise 3

Prove the following result.

Let $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ be a knowledge base.

If *a* is an instance of *C* w.r.t. \mathcal{K} and $C \sqsubseteq_{\mathcal{T}} D$, then *a* is an instance of *D* w.r.t. \mathcal{K} .

Exercise 4

Prove the following results.

Let $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ be a knowledge base, C and \mathcal{ALC} -concept description and a an individual name.

- a) ${\mathcal K}$ is consistent iff $\tau({\mathcal K})$ is consistent.
- b) *a* is an instance of *C* w.r.t. \mathcal{K} iff $\tau(\mathcal{K}) \models \tau_{X}(C)(a)$.