

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Description Logics

Exercise Sheet 4

Dr. Anni-Yasmin Turhan / Dipl.-Math. Felix Distel Summer Semester 2011

Exercise 1

In the lecture we saw that bisimulations allow to compare the expressive powers of DLs.

- a) Extend the notion of bisimulation relation to \mathcal{ALCN} .
- b) Prove that ALCN is bisimulation invariant for the bisimulation relation defined in (a).
- c) Prove that \mathcal{ALCQ} is more expressive than \mathcal{ALCN} .

Exercise 2

Let $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ be a consistent knowledge base. We write $C \sqsubseteq_{\mathcal{K}} D$ if $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ for all models \mathcal{I} of \mathcal{K} . Prove that for all \mathcal{ALC} -concepts C and D, we have $C \sqsubseteq_{\mathcal{K}} D$ iff $C \sqsubseteq_{\mathcal{T}} D$. Hint: Use disjoint unions.

Exercise 3

Show the following claim: If a concept *C* is satisfiable w.r.t. an \mathcal{ALC} -TBox \mathcal{T} , then for all $n \ge 1$ there is a model \mathcal{I}_n of \mathcal{T} such that: $|\mathcal{C}^{\mathcal{I}_n}| \ge n$.

Exercise 4

Prove or refute the following claim:

Given an \mathcal{ALC} -concept C and an \mathcal{ALC} -TBox \mathcal{T} . If \mathcal{I} is an interpretation and \mathcal{J} its filtration w.r.t. Sub(C) \cup Sub(\mathcal{T}), then the relation $\varrho = \{(d, [d]) \mid d \in \Delta^{\mathcal{I}}, [d] \in \Delta^{\mathcal{J}}, d \simeq [d]\}$ is a bisimulation.