

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Description Logics

Exercise Sheet 6

Dr. Anni-Yasmin Turhan / Dipl.-Math. Felix Distel Summer Semester 2011

Exercise 1

Show that the size $|C|_{\mathcal{T}}$ of a concept *C* w.r.t. to an acyclic TBox \mathcal{T} , as defined in the proof of Lemma 4.13 in the lecture, is well-defined.

Exercise 2

In the proof of Lemma 4.13 it is shown via structural induction that the canonical interpretation $\mathcal{I}_{\mathcal{A}}$ of an open and complete ABox \mathcal{A} is indeed a model of \mathcal{A} . Complete the proof by showing $C(x) \in \mathcal{A} \Rightarrow x \in C^{\mathcal{I}_{\mathcal{A}}}$ for the case $C = \neg \mathcal{A}$ for some defined concept \mathcal{A} .

Exercise 3

Extend the proof of Lemma 4.8 to the lazy expansion rules \equiv_1 and \equiv_2 .

Exercise 4

Use a tableau algorithm to decide, whether the following knowledge base is consistent.

$$\mathcal{T} = \{ A \sqcap \forall r. \neg A \sqsubseteq \bot \}$$
$$\mathcal{A} = \{ (\forall r. \neg A)(a), \ (\exists r.A)(b), \ r(a, b) \}$$