

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

# **Description Logics**

#### **Exercise Sheet 10**

Dr. Anni-Yasmin Turhan / Dipl.-Math. Felix Distel Summer Semester 2011

## Exercise 1

Determine whether or not Player 2 has a winning strategy in the PSPACE game  $G = (\varphi, \{p_0, p_2\}, \{p_1, p_3\})$  with

 $\varphi = (\neg p_0 \rightarrow p_1) \land ((p_0 \land p_1) \rightarrow (p_2 \lor p_3)) \land (\neg p_1 \rightarrow (p_3 \rightarrow \neg p_2))$ 

## Exercise 2

A quantified Boolean formula (QBF for short)  $\Phi$  is of the form

 $Q_1 p_1 . Q_2 p_2 . . . . Q_n p_n . \varphi$ 

for  $Q_i \in \{\forall, \exists\}$  and  $\varphi$  a Boolean formula over  $p_1, \ldots, p_n$ . The validity of QBFs is defined inductively:

 $\exists p.\Phi$  is valid if  $\Phi[p/t]$  or  $\Phi[p/f]$  is valid  $\forall p.\Phi$  is valid if  $\Phi[p/t]$  and  $\Phi[p/f]$  are valid.

Reduce the problem of deciding the validity of QBFs to the problem of deciding the existence of a winning strategy for PSpace games.

#### Exercise 3

Let  $\mathcal{K} = (\mathcal{A}_0, \mathcal{T})$  be an  $\mathcal{ALC}$ -knowledge base, with  $\mathcal{T}$  a general TBox. The *precompletion* of  $\mathcal{K}$  is the set of ABoxes  $\mathcal{M}$  that is produced by the tableau algorithm when starting with the set of ABoxes  $\{\mathcal{A}_0\}$  and exhaustingly applying all rules except the  $\exists$ -rule. Do the following:

a) Show that  $\mathcal{K}$  is consistent iff there is an open  $\mathcal{A} \in \mathcal{M}$  such that for all individual names *a* occurring in  $\mathcal{A}$ , the concept  $C^a_{\mathcal{A}} := \prod_{C(a) \in \mathcal{A}} C$  is satisfiable w.r.t.  $\mathcal{T}$ .

Hint: For the "if" direction, proceed as follows. The correctness of the tableau algorithm for  $\mathcal{ALC}$  implies that, if  $C^a_{\mathcal{A}}$  is satisfiable, then exhaustively applying (all!) rules to the set of ABoxes  $\{\{C^a_{\mathcal{A}}(a)\}\}$  yields a set  $\mathcal{M}'$  that contains an open and complete ABox. Show how to join all these ABoxes to obtain an open and complete tableau for  $\mathcal{A}$  and conclude that  $\mathcal{A}_0$  is consistent w.r.t.  $\mathcal{T}$ .

 b) Use the result from (a) to prove that ABox consistency in ALC can be decided in deterministic exponential time (EXPTIME).