

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Description Logics

Exercise Sheet 12

Dr. Anni-Yasmin Turhan / Dipl.-Math. Felix Distel Summer Semester 2011

Exercise 1

We call the composition of features feature paths. Let f_1, \ldots, f_m and $g_1 \ldots, g_n$ be (not necessarily distinct) features. The concept constructor *feature path agreement* $(f_1 \circ f_2 \circ \ldots \circ f_m) \downarrow (g_1 \circ g_2 \circ \ldots \circ g_n)$ has the semantics

$$(f_1 \circ f_2 \circ \ldots f_m) \downarrow (g_1 \circ g_2 \circ \ldots g_n)^{\mathcal{I}} = \{ d \in \Delta^{\mathcal{I}} \mid f_m^{\mathcal{I}}(\cdots f_2^{\mathcal{I}}(f_1^{\mathcal{I}}(a) = g_n^{\mathcal{I}}(\cdots g_2^{\mathcal{I}}(g_1^{\mathcal{I}}(a))\}.$$

Show that for the DL that extends \mathcal{ALC} with feature path agreements, satisfiability w.r.t. general TBoxes is undecidable.

Exercise 2

If \mathcal{D} is a concrete domain, we use $\mathcal{ALC}(\mathcal{D})$ to denote the extension of \mathcal{ALC} with the concrete domain \mathcal{D} . Show the following:

- a) If f is an abstract feature, then $\exists f.C$ is equivalent to $\exists f.\top \sqcap \forall f.C$.
- b) Let D be a concrete domain with only unary predicates. Let ALC(D)⁻ be obtained from ALC(D) by allowing only concrete features instead of feature chains inside the concrete domain restictions. Prove that for every ALC(D)-concept, there is an equivalent ALC(D)⁻-concept.