

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

# **Description Logics**

### **Exercise Sheet 14**

Dr. Anni-Yasmin Turhan / Dr. Felix Distel Summer Semester 2011

### Exercise 1

Prove that for a given TBox  $\mathcal{T}$  and a consequence  $A \sqsubseteq B$  there can be exponentially many MinAs for  $A \sqsubseteq B$ . Hint: You do not need any concept constructors except conjunction.

## Exercise 2

Complete the proof of Theorem 8.5 for the case where  $\psi$  is obtained using (R3).

### Exercise 3

Let  $\mathcal{L}_1$  and  $\mathcal{L}_2$  be two DL-languages. We define the  $\mathcal{L}_2$ -lcs as follows. Let  $C_1$ ,  $C_2$  be two  $\mathcal{L}_1$ -concept descriptions. An  $\mathcal{L}_2$ -concept description C is called the  $\mathcal{L}_2$ -lcs of  $C_1$  and  $C_2$  iff

- (1)  $C_1 \sqsubseteq C$  and  $C_2 \sqsubseteq C$ , and
- (2) for all  $\mathcal{L}_2$ -concept descriptions D it holds that  $C_1 \sqsubseteq D$  and  $C_2 \sqsubseteq D$  imply  $C \sqsubseteq D$ .

This generalizes the standard notion of least common subsumers since it allows different logics for  $C_1$ ,  $C_2$  and their lcs.

Consider the following FLE-concept descriptions

$$C_1 = \exists r. C \sqcap \exists r. D \sqcap \forall r. (A \sqcap B),$$
  
$$C_2 = \exists r. B \sqcap \exists r. D \sqcap \forall r. (A \sqcap D).$$

Find

- a) the  $\mathcal{EL}\text{-lcs},$
- b) the  $\mathcal{FLE}$ -lcs<sup>1</sup>, and
- c) the  $\mathcal{ALC}$ -lcs

of  $C_1$  and  $C_2$ . Hint: It is not necessary to provide an algorithm that can compute the lcs in the general case.

 $<sup>{}^{1}\</sup>mathcal{FLE}$  provides conjunction, existential restrictions and value restrictions.