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1 Motivation

Classical logic is very well suited for speaking of objects and properties
that are identifiable, distinct and clear-cut. Many properties can be
characterized this way: the days of the week, the characters in a play,
the parts of an instrument, etc. In a word, these properties describe
sets of individuals (that satisfy them) and vice versa.

In the real world, however, it is not hard to encounter properties
that cannot be characterized in such a clear-cut manner. For example,
how can one define the property “tall”’? One could express that every
person over 1.90m. is tall, but then, what about someone whose height
is 1.899m.? Are we ready to express that she is not tall? Wherever
we set the threshold, this problem is unavoidable. Other examples of

Figure 1.1: A height chart

properties that defy a crisp definition are “old” or “warm”: one does
not start being old from one day to the next, but rather become in-
creasingly old with time; likewise, while a temperature of 0°C is cold
and 30°C is hot, we cannot strictly express when the air is warm. A

better way to express these properties is through a membership function
that gives a degree with which the property is satisfied. For example,
two persons with height 1.90m. and 1.85m. may be tall with degree 1
and 0.8, respectively. The membership function for the property “tall”
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Figure 1.2: Membership functions for properties “tall” and “warm”

will be a non-decreasing function of the height of a person; that is, the
greater the height, the more this person is tall. On the other hand,
the membership function for “warm” will first increase with the tem-
perature, but after some point will start decreasing again—when it stops
being warm, and starts getting “hot”.

We will consider the membership function to have the interval [0, 1] as
its image, where 0 will be interpreted as absolute false, and 1 as absolute
true. The intuition is that this function generalizes the characteristic
function of the sets describing a property (where an element in the set
has membership 1 and all others have membership 0).

Once that such a membership function has been constructed for de-
scribing some given properties, one must be able to deduce consequences
from the combinations of these properties; for example, one should be
able to express to which degree is a person tall AND old. Moreover,



we want to have a formal system, with unambiguous semantics, for
performing these deductions. In this course, we will look at ways to
generalize the classical logical operators so that they can deal with de-
grees of truth, rather than just the truth values 0 and 1. We will only
consider operators that “behave well” logically: they should be truth
functional (that is, the degree of a complex formula is a function of the
degrees of its subformulas), conjunction should be commutative and as-
sociative, etc. This is what we call fuzzy logic. We notice that there
is a wide selection of operators that “behave well”, and hence the term
fuzzy logic does not refer to one unique logic, but rather to a family of
fuzzy logic systems.

There are two things to keep in mind when dealing with fuzzy logic.
First, fuzzy logic deals with vagueness, rather than beliefs or uncer-
tainty. The proposition “tomorrow will rain” is either (totally) true or
(totally) false, we just do not know which one is the case; we can believe
one or the other will happen, but we have no full certainty of it. On the
other hand, two persons may be tall with a different degree, but this
does not mean that it is unknown whether they are tall or not.

Second, although probabilities are also measured using the interval
[0, 1], fuzzy logic is not a probabilistic logic. For one thing, probabili-
ties are not truth functional; for another, probabilities usually measure
uncertainty or beliefs of an event, which, as said before, is outside the
realm of fuzzy logic.

2 Fuzzy Propositional Logic

In this chapter we will define the basic fuzzy propositional logic. We
first define the class of operators that will be the basis for the logi-
cal connectives, then introduce the basic multi-valued logic, and finally
analyse some of its algebraic properties.

2.1 Continuous t-norms

Triangular norms (or t-norms for short) will be the basis under which
we will be able to define the logical connectives for fuzzy logic. Before
we define these formally, recall that we have chosen to take the interval
[0,1] as the set of truth values, where the usual ordering < for real
numbers is translated directly to the “degree of truth”. Thus, we have
infinitely many truth values, organized through a linear ordering which
is dense and complete. These properties will become important in the
development of fuzzy logic.

Recall also that we want only to deal with connectives that are truth
functional. Formally, for each binary connective ¢, there must exists
a function f. : [0,1]2 — [0,1] such that, for any two formulas ¢,1),
the truth degree of the formula ¢(¢, ) is given by applying f. to the
truth degrees of ¢ and 1. Analogously, we can deal with connectives of
arbitrary arity. This requirement will be helpful for obtaining a well-
behaved logic.

Finally, when choosing functions that describe a connective, we will
always focus on generalizing standard two-valued logic. In other words,
whenever restricted to only the truth values 0, 1, these functions should
behave as the classical connective. For example, the truth function ®
for conjunction must be such that 1®1 =1 and 1®0 =0®1 =00 = 0.
One obvious function that does this is the one defined by the minimum
of its two arguments. It is not hard, however to define other functions
satisfying these properties.



We will start the definition of fuzzy logic connectives by formulating
restrictions on the truth function of conjunction. We will then show
that all other connectives can be defined from conjunction in a unique
and adecuate way. The truth value of conjunction will be required to
be a t-norm.

Definition 2.1. A t-norm is an associative and commutative binary
operator ® on [0, 1] that is non-decreasing in both arguments and has
1 as its identity element. In other words, ® must satisfy the following
three conditions:

1. if z1 < x9 and y; < ¥y, then 1 ® y1 < 29 ® yo (non-decreasing),
and

2. 1®@x =z for all x € [0, 1] (unit)

The t-norm ® is called continuous if it is a continuous function (in the
usual analysis sense). A

The choice of t-norms for defining the conjunction (which will, from
now on, be denoted as &) is based on the following intuition. If the
formula ¢&1) has a high truth degree, then each of its subformulas ¢ and
1 must also have a high truth degree (non-decreasing) but there is no
information on which one of these subformulas, if any, has a higher truth
degree (commutativity). The other conditions follow from generalizing
the properties of classical conjunction.

There are three important continuous t-norms that we will study
during this course.

Exercise. Show that the following three binary operators are continu-
ous t-norms:

1. Lukasiewicz t-norm: r ® y = max{x +y — 1,0},
2. Product t-norm: x @y = x -y,

3. Gddel t-norm: x ® y = min{x, y}.

We now focus on defining the implication between formulas. As be-
fore, we will define the truth function of this connective by generalizing
the properties of classical implication. First, notice that the implication
¢ — 1 is true in classical logic iff the truth value of ¢ is smaller or equal
to the truth value of 1. This means that the truth value of ¢ — 9 de-
creases if the truth value of ¢ increases or the value of ¢ decreases. We
thus require the truth function = of implication to be non-increasing in
the first and non-decreasing in the second parameter. Additionally, we
want the implication to satisfy modus ponens: if x is true and z — y
is true, then y is also true. This generalizes to the fuzzy setting in a
natural way:

ifw<zand z<x=1y, then w® z <y,
and in particular (by taking w = x),
if z<zxz=y, thenz®z <y.

In order to have the strongest possible notion of modus ponens, we then
want to define = to be as large as possible. Equivalently, we want the
previous necessary condition for z to also be sufficient.

The following lemma shows that all these conditions can be satisfied
in a unique way for every continuous t-norm.

Lemma 2.2. For every continuous t-norm &, there is a unique binary
operator = such that for every x,y, z € [0,1] it holds:

z<zr=yiffr®z<y.
This operator is defined as v = y := max{z | x ® z < y}.

Proof. Let x,y € [0,1] and define (z = y) = sup{z | z ® z < y}. We
will show that this supremum is in fact a maximum (that is, * ® (z =
y) < y). Since ® is continuous and non-decreasing, it commutes with
suprema. It then follows that

rR@rx=y)=zsup{z|zz<y}t=sup{z®z|z®z <y} <y.

Uniqueness follows trivially from the fact that every element is < to
itself. O



Exercise. Prove Lemma 2.2.

The operator = defined in Lemma 2.2 is called the residuum of the
t-norm ®. We now see that residua in fact satisfy some important
properties that hold in classical logic.

Exercise. Show that for every continuous t-norm and its residuum =,
and every z,y € [0, 1]

l.z<yiff (x=y)=1,
2. 1=2)=u.

For the three main t-norms that we have defined, the residua are
defined as follows.

Proposition 2.3. The following operators define the residua of the
three main t-norms: for x >y,

1. Lukasiewicz implication: t =>y=1—x+y

2. Product implication: x =y =y/x  (also called Goguen implica-
tion)

3. Godel implication: T =y =y.
andr=y=11ifx <y.
Proof. Let 1 > x > y; then

lLLzz<yiffzr4+z-1<yiff 2 <1l —z+y; thusl —ax+y =
max{z | x ® z < y}.

2. z@z<yiffz-z2<yiff z<y/x.
3. z®z <y iff min{x, 2} <y iff z <y.
O

As mentioned before, the Godel t-norm, defined as the minimum of
its two arguments is the “natural” characterization of conjunction, and
is in fact one of the most studied, both, because of its simplicity, and
because it is very closely related to classical logic. This expressivity,
however, can be simulated by any continuous t-norm.

Lemma 2.4. For every continuous t-norm ®, and z,y € [0,1], the
following hold:

e min{z,y} =z ® (z=y)
e max{z,y} = min{((z = y) = v), (y = z) = x)}.

Proof. If x <y then (r =y)=1and hence z®@ (x = y)=z. lf x >y
then by definition (z = y) = max{z | z®z < y}; thus 2 ® (z = y) < .
Assume that z ® (r = y) < y, then by continuity of ®, there exists a
Z' such that x ® (r = y) < ¢ ® 2/ <y, which is a contradiction. Thus
xR (r=y)=uy.

For the maximum, let x < y. Then (z = y) = y=1=y =y.
Moreover, by definition of the residuum, we have that y ® (y = z) < x.
This implies that (y = z) = z = max{z | z® (y = z) < z} >y, and
so min{((z = y) = y), ((y = x) = =)} = y. The case where x > y is
dual. O

One can additionally define the ordering <: x < y iff min{z,y} = x.

We have thus far defined an interpretation of the conjunction, and its
associated residuum that will interpret the implication. With the help
of the latter one, we will introduce a negation function. Notice that in
classical logic one can define the negation —¢ as ¢ — false. We use this
same intuition, and interpret the negation using the precomplement of
the residuum =.

Definition 2.5. Every residuum defines a corresponding unary opera-
tor ©x = x = 0, called the precomplement. A

Exercise. Find the precomplement of the three main continuous t-
norms.

So far, only three different continuous t-norms have been introduced.
We will now show how to construct new continuous t-norms by com-
bining previously known t-norms into an ordinal sum.

Definition 2.6. Let Z be a (possibly infinite) set of indices and (a;, b;),
i € T a family of pairwise disjoint, non-empty open subintervals of
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[0,1]. The ordinal sum of the family ®;,7 € Z of t-norms is the function
® : [0,1] x [0,1] — [0, 1] defined by

r@y = a; + (b —a;) - (=2 @i =5) i 2,y € [a;, bi]
min{z, y} otherwise

and denoted as ), 7(®i, a;, b;) A

The main intuition behind an ordinal sum is that each t-norm ®; is
used locally over the interval [a;, b;], and these are combined using the
operator min. If all the t-norms ®; are continuous, then their ordinal
sum is also a continuous t-norm.

Proposition 2.7. If ®; is a continuous t-norm, for all i € I, then
Y icz(®i, a4, b;) is also a continuous t-norm.

Proof. Let ® denote the ordinal sum ,; 7(®;, a;, b;).

We first show that it is a t-norm. Commutativity and associativity
are trivial consequences from the definition. So we only need to prove
that it is non-decreasing and that 1 is a unit.

[Unit] Let = € [0,1]. If there is some i € Z such that = € [a;, b;] and
bi = 1, then

— a; Tr — a;

1
1@z = Gz“f‘(l_ai)'(l_a‘ e
T (3

)

T — a
= a;+(1—a) (1®; 1—a:)
T — a;

= ai+(1—a)-(

)

l—ai
= e +tr—a;=2x.

Otherwise (that is, if there is no i with these properties) then
1® 2z =min{l,z} = z.

[Non-decreasing] By commutativity, it suffices to show that if 21 < x9,
then 1 ® y < 2 ® y. We will prove this with the help of the following
claim.

Claim. for every x € [0,1]
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1. if there is some i € T such that x € [a;,b;], then for every y >
a;,x @y € [a;, b;] and for every y < a;,x @y = y;

2. if there is no i € T such that x € [a;, b;], then for every y € [0, 1]
x ®y = min{x,y}.

Proof of Claim. Point 2. and the second part of Point 1. are trivial
from the definition of ®. For the remaining part of Point 1., if y > b;,
then z ® y = x € [ay, b;]; otherwise,

a; — Qg a; — a; Tr — a; Yy —a;
0= ) .
bi—a U hi—a C bi—a b
< bi—a,~®ibi—a,~:1
bi—ai bi—ai
and thus a; = a; + (b; —a;) - 0<z®y <a;+ (b —a;) -1 =10;. O

To show that ® is non-decreasing, assume first that there is some
i € Z such that x;, x2 € [a;,b;]. Then, if y ¢ [a;, b;],

T QY= min{xl, y} < min{$27 y} =12QY.

If Y € [ai, bz] then

Tl — a; Y —a;
ney = a+bi—a) (F—— & ——)
(2 2 (2 1
L2 —a; Y — a4

< ag+ (b —a;) - (

)

bi*ai Zbi*az'
= 220Y.

Assume now that there is no i € Z where {x1,z2} C [a;,b;]. We define
the sets S, .99 as follows:

g _ Jlaibil ik €lay,b) 5 €T
"o Tk if for every j € Z, xy, ¢ [a;, bj].
Since the sets (a;, b;) are pairwise disjoint, and 27 < x9, it follows that
z1 < z9 for every z; € S1 and zo € S3. Using the claim, it follows that
@y € SpU{y} and 2, @ y ¢ Sy, iff for every z € S,y < z. This all
together implies that 21 ® y < 2 ® y.

12



We now prove that it is continuous. Due to commutativity and the
continuity of the t-norms ®; it suffices to show that for every y € [0, 1]
and every i € Z, the function x ® y is continuous in a; and b;. Notice
that if a; <y, then a; ® y = a; and if y < q; then a; ® y = y. Likewise,
if y < b; then b; ® y = y and if b; < y then b; ® y = b. By the continuity
of min we thus obtain continuity of ®. O

Conversely, it is clear that every continuous t-norm is the ordinal sum
of continuous t-norms since every t-norm is a trivial ordinal sum of itself
on the whole interval (0,1). A more interesting result is given by the
following theorem.

Theorem 2.8 (Mostert-Shields). Every continuous t-norm can be ex-
pressed as the ordinal sum of Lukasiewicz and product t-norms.

This theorem justifies the study of only the three “main” t-norms that
we have described before, as every other continuous t-norm is simply a
combination of these three.

Interestingly, the residuum of a t-norm constructed as an ordinal sum
can also be expressed through the residua of the t-norms.

Proposition 2.9. Let ® = ), 7(®4, a;,b;), where each ®; is a contin-
uous t-norm, and let =; denote the residuum of the t-norm ®;. Then,
the residuum of @ is given by

1 if v <y,
c=y=9a+0bi—a) (=2 =i f=5) ifai<y<z<b;,
Y otherwise.
Proof. Follows from a simple case analysis. O

2.2 The Basic Logic

We have said before that the t-norm will be used to interpret conjunc-
tions; we have also claimed that the operator min is a natural general-
ization of the conjunction of classical logic. Since both are expressible
together, rather than ignoring one of them, we will use them together,
depending on the desired expressivity. Only the former is a primitive

13

constructor, while the latter, as shown in the previous section, is only
an abbreviation of a longer formula.

Basically, given a continuous t-norm ®, we obtain a propositional
calculus over the set of truth values [0,1]: ® is the truth function for
conjunction & and the residuum =- is the truth function of the impli-
cation —. This is formally defined next.

Definition 2.10. Let ® be a continuous t-norm. The propositional
calculus PC(®) has a countable set of propositional variables pi, pa, . . .,
connectives & and — and the truth constant 0. The formulas of this
calculus are defined in the usual way: every propositional variable is a
formula, 0 is a formula, and if ¢, are formulas, then also ¢&y and
¢ = 1 are formulas.

A wvaluation is a mapping V assigning to each propositional variable
p a value V(p) € [0, 1]. This valuation is extended to arbitrary formulas
as follows:

VO) = 0,
V(p&y) = V(g) @ V(¥),
Vg =) = V(o) = V().
A

Other interesting connectives that can be introduced as abbreviations
of complex formulas are the following;:

PAY = ¢&(d = 1),
oV = (0 =) =2 Y)A (Y = ¢) = 9)

_\¢ = gf)*)O
p=¢ = (0= P& = 9)
1 = 0-—-0.

In particular, it follows that V(¢Av) = min{V (), V(¥)} and V(¢V1p) =
max{V(¢),V(¢)} (see Lemma 2.4).

In some sense, we have two conjunction operators: the &-conjunction,
which we will also call strong conjunction, that is interpreted with the
t-norm, and the A-conjunction (weak conjunction) interpreted with the

14



operator min. On the other hand, we have only one disjunction, corre-
sponding to the weak disjunction with max as its truth function. Al-
though it is possible to also define a strong disjunction operator, this
will extend the expressivity of the logic.

We will now develop a proof system for this logic, in which we are in-
terested in deducing those formulas that are true under any evaluation.
We call these 1-tautologies.

Definition 2.11. A formula ¢ is a I-tautology of PC(®) if V(¢) =
for every valuation V. A

It should be clear that different t-norms ®; and ®o will produce
a different set of 1-tautologies: —=—¢ — ¢ is a 1-tautology under the
Lukasiewicz t-norm, but not under the product or Gédel t-norms [Ex-
ercise?]. We will for the moment abstract from these differences, and
focus on finding formulas that are 1-tautologies for any continuous t-
norm.

We proceed as follows: we will first present eight 1-tautologies that
will be the basic axioms for all the logics PC(®). Together with modus
ponens as a deduction rule, we obtain a sound logic. This means that
every provable formula is itself a 1-tautology in every PC(®). In par-
ticular, this means that it is a tautology in classical logic. [Note, the
converse is not true]

Definition 2.12. The following formulas are the axioms of the basic
logic BL:

¢ =) = (v —=x) = (6= X))
&) —
&) — (P&o)

(A1) (
(A2) (
(A3) (
(Ad) (¢&e(9 = ¢)) = (V&(v — ¢))
(A5) (¢
(A6) (
(A7) (

A2
A3

A5) (¢ — (¥ = X)) — ((#&t)) — x)
(p&)) = x) = (¢ — (¥ = X))
(=)= x) = (¥ —=¢) = x) = X)

A6
A7
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(A8) 0 — ¢

The deduction rule of BL is modus ponens; that is, from ¢ and ¢ — 1,
we infer 1.

A proof in BL is a sequence ¢1, . .., ¢, of formulas such that every ¢;
is either an axiom of BL or follows from some preceding ¢;, ¢, j,k < 1,
by modus ponens. A formula ¢ is provable in BL, denoted as BL F ¢ if
there is a proof ¢1, ..., ¢, such that ¢, = ¢. A

Intuitively, the axioms of BL express the properties of t-norms and
their residua: Axiom (A1) expresses the transitivity of implication; (A2)
and (A3) express the monotonicity and commutativity of &-conjunction,
respectively; (A4) expresses the commutativity of A, (A5) and (A6)
formulate the definition of residua and (A8) states that falsity implies
everything. Finally, the axiom (A7) describes a variant of a proof by
cases.

In order to have a sound proof system for the logic BL, it is necessary
that all these axioms are in fact 1-tautologies in PC(®). Additionally,
modus ponens should also be a sound deduction rule. This is given by
the following lemma.

Lemma 2.13. All the axioms of BL are 1-tautologies in PC(®) for
every continuous t-norm &. If ¢ and ¢ — 1 are 1-tautologies of PC(®),
then 1 is also a 1-tautology of PC(®).

Proof. We will prove the lemma for the first four axioms only, the other
four are left as an exercise.

[(A1)] To verify that this is a 1-tautology, we need to prove that for
every z,y,z € [0,1]

1<(z=y)=(y=2) = (r=2)).
From the definition of residuum, this follows iff
=y <(y=2) = (r=2).
Using the same argument, this is true iff (y = 2)® (z = y) <z = z iff

(y=2)0 @@=y z<z

16



From Lemma 2.4, we then have

y=2)0@=y)0zr<(y=2) 0y < 2

[(A2)] For every z,y € [0,1] it holds that x ® y < x ® 1 = x and hence
(z®y)=z=1.
[(A3)] From commutativity of ®, * ® y = y ® x and hence (z ® y) =
(yoz)=1
[(A4)] From Lemma 2.4, z ® (r = y) = min{z,y} = min{y,z} =
y®(y= 1)

Finally, for soundness of modus ponens, recall that if x = 1, then
x =y =1y. Hence, if x = y =1 it follows that y = 1. O

Exercise. Prove that (A5)-(A8) are 1-tautologies of PC(®).

A consequence of this lemma is that every formula that is provable
in BL is also a 1-tautology in PC(®).

We now prove some properties of the different connectives. Notice
that in the following we are interested more in the consequences that can
be derived from the axioms through modus ponens than in proving that
the formulas are 1-tautologies. Later on, we will prove a completeness
theorem, that will show that provable in BL and 1-tautology in PC(®)
are equivalent.

Lemma 2.14 (Implication). The following formulas are provable in
BL:

(1) ¢ = (¥ —9)
(2) (6= (b= x) = (¥ —=(¢—=x))
(3) o= ¢
Proof. (1) From axioms (A2) and (A6), we have
(p&rp) = ¢ and ((¢&v)) = @) = (¢ — (¥ — ¢)).

Using modus ponens we obtain (1).

(2) BLE ((h&o) — (¢&1)) = (((¢&tp) = x) — (&) — X)) [(AD)],
thus BL F ((¢p&v) — x) — ((¥&¢) — x) [(A3) and modus ponens],
and from (A5) and (A6) we get

BLE[¢ = (¥ = x)] = [(0&y) = x] = [(¥&¢) = x] = [ = (¢ = X)]

17

From transitivity of implication, the rest follows. O

Exercise. Prove (3)

Lemma 2.15 (Strong conjunction). BL proves
(4) (¢&(p — ) = ¢

(5) & = (Y — (&)

(6) (¢ = ) = ((¢&x) — (v&x))

Proof. (4) BLF (¢ — ¢) — (¢ — ¢) [(3)] and so

BLF ¢ — ((¢ — ¥) — ¢) [(2)]. Using (A5) we then get (4)
(5) From (3) BL - (¢p&1)) — (p&)); using (A6) we have
BLE ¢ — (¢ — (&)

(6) BL F (¢&(d — ¥)) — v (4), B
BLF (¢&(¢ = ¢)) = (x = (d&x)
BLE ¢ = ((¢ = ) = (x = (¥&x))

,) L = (x = (¥&x)) (5), so
)
BLF® — (x = ((¢ = ¢) — (¢&X§)
)

Al)
(A6)
(2)
Ab)
2) O

BL I (¢p&ex) = ((¢ = ¢) — (&)
BLF (¢ = ¢) = ((0dex) = (P&ex)

Exercise. Prove the associativity rules for strong conjunction and

(01 = ¥1)&(d2 = 12)) = ((P1&2) = (V1&2))
Lemma 2.16 (Weak conjunction). BL proves

(7) (p&y)) — (¢ A1)
(8) (¢ = ¥)A (= X)) = (¢ = (YAX))

Proof. (7) BLF ¢ — (¢ — ) (1)

BL l—( (1/1)—> (¢ =) = (V&P — (¢ — V¥)&¢) (6). The rest is (A3)
and (Al).

(8) BLF (¢ — x) = (¥ — (¥ A x)) (Exercise!) and

BLE o = (¥&(¢ = X)) = ((¢ = )&((¢6 = ¢) = (¢ = X)) = (6 =
(p&(1h = x)))); thus

BLE (v — (v A X)) = [((¢ = ¥) A
this, it follows that BL - (¢ — x) — (8).
— (8

Analogously, BL - (x — ) ). And from Axiom (A7), the result
follows. O

(
)
)
(
(

(6 = X)) = (¢ = (¥ Ax))]- From



Exercise. Complete the proof of Lemma 2.16 by showing that BL
proves

(@ =) = (0= (BAY)).
Lemma 2.17 (Negation). BL proves

(9) ¢ = (¢ = ¥)

(10) (¢ = (p&—¢)) = ¢

Proof. (9) BLF ¢ — ((¢ — 0) — 0) follows from (4) and

BLF 0 — ¢ (A8) implies that BLF ((¢ — 0) — 0) — ((¢ — 0) — ¥).
From this, we get (9).

(10) BLF (¢&(1» — 0)) — 0 (4). And so we get (10) O

Exercise. Prove the following in BL:

[ ] ¢ — —\—|(ZS7
o (¢p&—¢) — 0. [This is used in the proof before, maybe too easy?]

In general, one is usually interested in finding the consequences of
additional information (formulas), rather than the set of tautologies
derivable from the calculus. This motivates the notion of a theory.
Simply, a theory is a set of formulas that are assumed to be true; that is,
considered “special axioms”, and the deduction system is used to obtain
the set of formulas that are necessary true in this theory. Obviously,
this set will include all the tautologies of the original calculus.

Definition 2.18. A theory over BL is a set of formulas. A proof in
a theory T is a sequence of formulas, where each element is either an
axiom, an element of T', or follows from preceding elements through
modus ponens. The formula ¢ is provable in T (denoted as T+ ¢) if it
is the last element of a proof in T'. A

As in classical logic, we can focus on studying only the tautologies of
the logic, since the elements of the theory T can be transfered to the
formula to be proven, as stated in the following theorem.

Theorem 2.19. Let T be a theory and let ¢, be formulas. TU{¢p} F ¢
iff there is an n € N such that T+ ¢"™ — b (where ¢™ denotes ¢&...&¢

n times).
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Proof. [if] Since & is commutative and associative, for any n > 1 it
follows that if T ¢™ — 1, then T F (¢p&¢™ 1) — ¢ and T + (¢ —
("1 — ), which by definition means that T U {¢} + ¢"1 — 4.
Repeating the same argument, we obtain T'U {¢} F ¢ — 1 and thus
TU{¢}F .

[only if] Assume now that T'U {¢} - ¢ and let 71,...,7% be a proof
for 1. We prove by induction that, for each j = 1,...,k, there is an n;
such that T'F ¢™ — ~;. If v; is an axiom of BL or a formula in T'U {¢}
this result trivially follows. If ~y; is obtained by applying modus ponens
to previous formulas in the proof ~;, (v — <;), then by the induction
hypothesis we can assume that T+ ¢™ — v; and T+ ¢™ — (7 — v5)
and hence [exercise given before] T' = (¢"&¢™) — (vi&(vi — 7).
Thus, T+ ¢"T™ — ~; (4). O

Notice that in classical logic, the deduction theorem has a stronger
form, in the sense that there is no need for conjoining the formula ¢
repeatedly with itself. This is mainly due to the idempotency of con-
junction in classical logic, which does not hold in fuzzy logic in general.
However, when the Gdédel t-norm is used, then strong conjunction is
again idempotent, and the stronger version of the deduction theorem
holds.

Once we allow arbitrary formulas to be assumed to hold through a
theory T, we encounter the risk of including contradictory information.

Definition 2.20. A theory T is inconsistent if T F 0. Otherwise, it is
consistent. AN

Our logic BL cannot handle inconsistent theories, since every formula
is provable from such a theory.

Lemma 2.21. T is inconsistent iff T & ¢ for all ¢.

Proof. If T proves every formula, then it proves 0. Conversely, if T'+ 0,
then from (A7) it follos that T+ ¢. O

Another characterization of inconsistency in classical logic is that if
a formula makes a theory inconsistent then the theory could derive
the negation of the formula. In general for fuzzy logics, only a weaker
version of this result holds.
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Lemma 2.22. If T U {¢} is inconsistent, then T F —(¢™) holds for
some n.

Proof. If T U {¢} F 0, then by the deduction theorem, there is an n
such that T F ¢™ — 0. ]

We have thus far developed a sound proof system, and used it to
derive some interesting tautologies. It still remains to show that this
system is complete; i.e., that every 1-tautology is provable in the system.
To do this, we will first make a detour through residuated lattices, and
remove the assumption that the truth values belong to a total order.

2.3 Residuated Lattices

We have defined, for every continuous t-norm ® a propositional cal-
culus PC(®) and described a sound logic BL that describes all the
1-tautologies in every PC(®).

We will now proceed with an algebraization of this logic. We will
introduce a class of lattices called BL-algebras and show the following:

(i) for every t-norm ®, the interval [0, 1] with the truth functions of
connectives is a linearly ordered BL-algebra,

(ii) BL is sound for every linearly ordered BL-algebra; that is, every
provable formula is a 1-tautology over such a lattice,

(iii) the set of all formulas (modulo provable equivalence) with the
operations of the connectives is a BL-algebra, and

(iv) a tautology over all linearly ordered BL-algebras is a tautology
over all BL-algebras.

To prove completeness of the logic w.r.t. any BL-algebra, we will then
only need to prove the converse of the implication in (ii); the result then
follows directly from (iv).

The lattices that define the BL-algebras will be a special kind of
residuated lattices.
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Definition 2.23. A residuated lattice is an algebra of the form
(L7 ma U7 ®7 :>7 07 1)
such that

(i) (L,N,U,0,1) is a lattice with largest element 1 and least element

(ii) (L,®,1) is a commutative semigroup with unit 1, and
(iii) ® and = satisfy z < (zr = y) iff r ® 2 <y for all z,y, z € L.

The residuated lattice is linearly ordered if its lattice ordering is linear;
that is, for every z,y € Lx Ny =2 or x Ny. JAN

For a residuated lattice to be a BL-algebra, we will require that the
supremum and infimum lattice operators (N, U), can be defined through
the t-norm and its residuum, as done in Lemma 2.4.

Definition 2.24. A residuated lattice (L,N,U,®,=-,0,1) is called a
BL-algebra iff the following two identities hold for all x,y € L.

L.zNy=2z® (z =vy),
2. (z=y)U(y=2)=1.
A

This last restriction is called the axiom of prelinearity. Intuitively, if
we have a total order, this axiom states that either z < y or y < =.
For general lattices the notion is somehow more complex, and will be
explained later.

We now prove some basic properties of BL-algebras, that relate them
to the properties of t-norms over the interval [0, 1] studied before. Recall
that in a lattice, the ordering < is defined by z <y iff x Ny = .

Lemma 2.25. For each BL-algebra and x,y,z € L, the following holds:
Lze@E=y <yaamdz<(y=(r1y)),

2. x <y impliesz®z < yRz, (2 = z) < (2 =y),(y = 2) < (v = 2),
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S rx<Lyiffr=y=1,
4. (@Uy)®@z=(r®2)U(y® z),
5. (zUy)=((z=y) =y Ny =2 =2).

Proof. 1. Since x = y < x = y, it follows that z ® (x = y) < y.
Additionally, since z ® y < x ®y, it follows that x <y = (z ®y).

2. Let x <y. By l.wehavey < z = (y®z). Thus, z < z = (y®2),

andz®z2<y® z.

Additionally, we have z ® (z = z) <z < y and so (z = x) <

(z=y)

and also r® (y = 2) <y®(y = z) < z and thus (y = z) < (z =

Jr<yiff l@z<yiff 1<(z=y)iff 1 = (z=y).

4. Since x < xUy we have that 1@ 2 < (zUy) ® z. Likewise, y® 2z <
(xUy) ®z. Thus (lattice properties) (z®2)U(y®2) < (zUy) ® 2.
Conversely, zt® 2z < (r® 2) U (y ® z) and thus z < z = [(z ®
2) U (y ® 2)]. Likewise, y < 2z = [(z ® 2) U (y ® 2)], and hence
(xUy) < z = [(z®2)U(y®2)], and so (zUy)®z < (z®2)U(y®2).

5. From 4. it follows that

=y e@ly =@ @@=y)Uye@=y)<yUy=y
Then, x Uy < (z = y) = y. Analogously, tUy < (y = z) = =,
andsozUy < ((z=y)=y)N((y=z)=1).
Conversely, since (z = y) U (y = z) = 1, it follows that
(z=y)=yn(y=z)=2)]=[]o@=y)Uly==2)
=([Jeo@=y)u((-]ely=m=1)
<=y =ye@E@=yul(y=r1r) =)0y =1)
<yUz.

O

If we restrict to linearly ordered lattices (that is, where there are no
incomparable elements), then the first condition from the definition of
BL-algebras suffices.

Lemma 2.26. A linearly ordered residuated lattice is a BL-algebra iff
rNy=z® (x=1y) holds for every x,y € L.
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Proof. The “only if” direction is trivial by definition. For the converse,
we only need to prove prelinearity. Since L is linearly ordered, it holds
that * <y or y < x and hence x = y =1 or y = = = 1 and hence
(r=y)=1U(y=2z) =1 O

We say that a linearly ordered residuated lattice is divisible if for
every x,y with > y there exists some z such that y = z ® z.

Exercise. Show that every divisible linearly ordered residuated lattice
is a BL-algebra. [Hint: use Lemma 2.26]

It thus follows that every continuous t-norm on the interval [0, 1] with
the standard ordering of real numbers determines a BL-algebra. [Recall
point (i) of the roadmap]

If we want to talk about tautologies in BL-algebras, we first need an
appropriate notion of a valuation of the formulas. This is defined as for
continuous t-norms over [0, 1] (Definition 2.10).

Definition 2.27. Let L = (L,N,U,®,=,0,1) be a BL-algebra. An
L-valuation is a mapping V assigning to each propositional variable p a
value V(p) € L. This function is extended to arbitrary formulas in the
usual way; that is,

V) = 0,
V(&) = V(g) @ V(¥),
V(e —9) = V(o) = V().

A formula ¢ is an L-tautology if V(¢) = 1 for every L-valuation V. A

Notice that in particular, since L is a BL-algebra, we also obtain that,
for every valuation V

V(eny) = V(e)nV(@),
Vievy) = V(e)UV(p),
V(=¢) = V(9)=0.

The BL-logic defined in the previous section is also sound when using
any BL-algebra. The proof is very similar to the one of Lemma 2.13,
and thus we omit it here.
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Theorem 2.28. If ¢ is provable in BL, then ¢ is an L-tautology for
every BL-algebra L. More generally, if T is a theory over BL and T
proves ¢, then for every BL-algebra L and every L-valuation V of the

propositional variables that assigns the value 1 to all the axioms of T
we have that V(¢) = 1.

This shows the second point from our roadmap; in fact it shows a
stronger result, since it is not limited to linearly ordered BL-algebras.
We now turn our attention to the third point; that is, that the classes
of provably equivalent formulas define a BL-algebra.

Definition 2.29. Let T be a fixed theory over BL. For each formula
¢, let [¢p]r be the set of all formulas ¢ such that T F ¢ = 9 (that is,
formulas that are T-provably equivalent to ¢). Denote as Ly the set of
all the classes [p]p. We define the algebra Ly := (Lp,N, U, ®,=-,0,1)
where:

0 := [0]p,
1 = [,

[Pl @ [Wlr = [p&y]T,
[Pl = Wl = [¢p— Y],
[Ply N [Wlr = [pAY]r,
[Plp Ulr = [pVY]r.

Lemma 2.30. Ly is a BL-algebra

Proof. We need first to prove that (L7, N, U, 0,1) is a lattice bounded by
0 and 1. The properties of lattice can be derived from the axioms and
properties proven before. For instance, let us show that [¢]r N [¢]r =
[¢7] (the idempotency of N). We need to show that T+ ¢ = ¢A¢. Recall
that ¢ A 1= @& (¢ — 1); thus we know (A2) that BLF (¢ A ¢) — ¢.
We now show that BLF ¢ — (¢ A ¢):

From (3) we know that BL - ¢ — ¢. And from (5) it follows that
BLF (¢ — ¢) = (¢ — (¢p&(¢ — ¢))). Using modus ponens, we
get the desired conclusion. To prove that it is bounded, notice that
BLFOA ¢ =0 and that BLF 1V ¢ = 1. To show that (L7, ®,1) is a
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commutative semigroup, we simply use axiom (A3) and the associativity
of strong conjunction. That 1 is the unit is shown as follows:
BLF1 — (¢ — (1&¢)) [(5)] and since BL F 0 — 0 [(3)] we get the
desired equivalence.

We now need to show that this lattice is residuated, with operators
® and =-. For this, observe that the lattice ordering < satisfies that

[¢lr <[Wlr i TF ¢ — ¢
if T ¢ — 1, then T+ ¢ = (¢ A1), which means that

[l = (@] N [Y]r

and thus [¢]7 < [¢]r. Conversely, if [¢]7r < [¢]r, then T+ ¢ = (¢ A )
and thus, T+ ¢ — ¢ (since T F ¢ A — ).

Using this observation we now show the adjointness property:

e < (87 = [l i T F oy — (6 — 1) i T F (x&o) — & (AB,A6) iff
[x&o)r < [¢]r. All this shows that Ly is a residuated lattice.

We need only to show that the two conditions of Definition 2.24 (of
BL-algebras) also hold. The first condition is a direct consequence of
the definition of the weak conjunction A. Hence, we need only prove the
second condition; that is, BLF (¢ — ¢) V (¢ — ¢) = 1, or equivalently
BLE (¢ — )V (¢ — ¢). Notice that BLF ¢ — ((¢ — ¢) — ¥) [(A6)
and (4)] and BLF ¢ — (¢ — ¢) — ¢) [(1)], thus we have BL - ¢ —
(¢ V 9). From this it follows that BL - (¢ V¢) — (¢ = ) V (¢ — ¢).
Analogously, we get that BL + (¢ V ¢) — (¢ — ) V (¢ — ¢). And
thus, from axiom (A7) we get the prelinearity property. O

To show completeness of our proof system, we will use the notion
of filters. These will allow us to characterize homomorphisms from
residuated lattices to linearly ordered lattices. Notice that this notion
is given for all residuated lattices, even if they do not satisfy the extra
requirements of BL-algebras.

Definition 2.31. Let L = (L,N,U,®,=-,0,1) be a residuated lattice.
A filter on L is a non-empty set F' C L such that for every x,y € L the
following conditions hold:

o if {x,y} CF,then z®y € F, and
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o ifx € Fand x <y, then y € F.

F is called a prime filter if for every z,y € L it holds that © = y € F
ory=ux¢€kF. A

Given a filter F' on a BL-algebra L, we define the relation ~r on L
as

c~py M {(@=y),(y=2)} CF.

This relation in fact defines a congruence relation, and hence its quotient
algebra is well-defined. This quotient is also a BL-algebra.

Lemma 2.32. Let L be a BL-algebra and F' a filter on L. The following
two properties hold:

(i) ~F is a congruence relation, and the quotient alegebra L/ ~p is
a BL-algebra,

(ii) L/ ~p is linearly ordered iff F' is a prime filter.

Proof. (i) We first show that ~p is an equivalence relation. Obviously,
since F' # () and x < 1 for all z € L, it holds that 1 € F. Thus,
x = x = 1 € F which means that z ~p z. Reflexivity is trivial from
the definition. So we need only to prove that it is transitive. This
follows from the fact that ((¢ — V)& — x)) = (¢ — x) is an
L-tautology (axioms (A1) and (A6)) and thus, for every z,y,z € L
it holds that ((z = y) ® (y = 2)) < (x = z). This means that if
{(x = y),(y = 2)} C F, then also x = z € F. Thus, z ~p y,y ~p 2
implies x ~p z.

Let now z ~p y. Then we know that z ® (x = y) < y and hence
2@z®(z = y) < 2Qy. But then it follows that z = y < (2@z) = (2Qy)
and since z = y € F, then also (z®x) = (2®y) € F. This means that
Z2Qx~p 2zQUY.

To show that © = z ~p y = z, it is sufficient to prove that (y = =) <
(x = 2z) = (y = z), or equivalently, that (y = 2)® (z = 2) < (y = 2).
This follows from the Point 1. of Lemma 2.25:

YRy = 2)® (@ = 2) <z (r = 2) < z and hence we have
y=1z) < (x = 2) = (y = 2), which means that = z ~p y = 2. The
proof that z = x ~p z = y is analogous.

27

(ii) First we show that if F' is a prime filter, then L/ ~p is linearly
ordered. Let x,y € L; since F is a prime filter, we know that z = y € F
or y = x € F. Assume that the former is the case. We will then show
that [z]p < [y]F; Le., [z]p N [y]F = [x]p. We know that 2 @ (x = y) <
r® (r = y) and hence r = y < xr = =z ® (z = y) and thus, as F' is a
filter we have that x = x ® (z = y) € F. Additionally,

rR =y @@=y <z

and hence z = y < z ® (z = y) = x which implies that z ® (z =
y) = x € F. We thus have that + ~p z® (r = y) = z and so
[2lr N ol = [ ® (@ = )l = [o]r.

Conversely, assume that L/ ~p is linearly ordered and let z,y € L.
As L/ ~p is linearly ordered, we know that either [z]p < [y]F or [y]F <
[x]p. Assume w.lo.g. that the former is the case. This means that
[t ® (z = y)]r = [z]p and hence z = = ® (x = y) € F. But then,
asx = r® (r = y) <z =y (Lemma 2.25 Point 1.) it follows that
r=>yeckF. O

The next lemma shows that we can use prime filters to remove any
element that is not the supremum of a BL-algebra.

Lemma 2.33. Let L be a countable BL-algebra and a € L such that
a # 1. Then, there exists a prime filter F' on L such that a ¢ F.

Proof. Obviously, {1} is a filter not containing a, however it is not
prime. We will show that if F' is a filter not containing a and x,y € L
are such that {z = y,y = x} N F = (), thene there is a filter F' O F
not containing a but containing either x = y or y = x. For this we
first prove the following claim.

Claim. The least filter containing F' and an element z € L is
F'i={u|3ve FInecNov®:z" <u}.

Exercise. Prove this claim (that is, show that F’ is a filter, and that
every filter containing F' and z must be a superset of F”.

We know that F' does contains neither (x = y) nor (y = z). Let
now Fp, F5 be the smallest filters containing F' and « = y, y = =,
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respectively. We claim that a ¢ F; N F,. Assume on the contrary that
a € F1 N Fy. Then, for some v € F' and natural number n, we have that
v@(x=y)"<aand v® (y = z)" < a. Thus,

a>v@(r=y)"Uy=2)"=va(z=y)"Uy=2)") =v@l =0

but since v € F and F is a filter, it then follows that a € F', which is a
contradiction. Thus, it follows that a ¢ F; or a ¢ Fb.

As L is countable, we can arrange all the pairs (z,y) from L? into
a sequence {(zn,yn) | » € N}. Let Fy = {1} and given a filter F,
not containing a, we construct F,,+1 2 F), as follows: if the smallest
filter containing F,, and z,, = y, does not contain a, then that is Fj,y1;
otherwise, F}, 11 is the smallest filter containing F), and y, = x,, which
as shown before cannot contain a. Then, the union

U

neN

is a prime filter. O

Notice that the previous lemma also holds for uncountable BL-alge-
bras, but the proof would require much more elaborate arguments that
are beyond the scope of this course.

Finally, we show that arbitrary BL-algebras can be expressed using
only linearly ordered ones, through a direct product of their carrier sets
and operators.

Lemma 2.34. FEvery BL-algebra is a subalgebra of the direct product of
a system of linearly ordered BL-algebras.

Proof. For a BL-algebra L, let U be the class of all prime filters on L,
and for each F' € U, let Ly denote L/ ~p. We define L* := HFeu Lp.
From Lemma 2.32, it follows that L* is the direct product of linearly
ordered residuated lattices (because each L is linearly ordered).

For every = € L, let i(x) be the element ([z]r)pey of L*. It is easy
to see that this embedding preserves the operations; thus we need only
to show that it is injective. Let x,y € L with x # y. Then either x £ y
or y £ x. Assume the former; then it follows that x = y # 1. By
Lemma 2.33, there exists a prime filter F' not containing x = y which
means that [z]p # [y|r and therefore i(z) # i(y). O
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With the help of this lemma we can show the next point in our
roadmap; namely, that a formula that is a tautology in every linearly
ordered BL-algebra is a tautology on every (arbitrary) BL-algebra.

Lemma 2.35. If a formula ¢ is an L-tautology for every linearly or-
dered BL-algebra L, then it is an L-tautology for every BL-algebra L.

Proof. Let L be a BL-algebra. From Lemma 2.34 we know that every
element © € L can be expressed as the tuple ([z|r)pecy, where each
L/ ~p is a linearly ordered BL-algebra.

Since ¢ is an L-tautology, if we replace all the variables in ¢ by
elements of L and the logical connectives by their corresponding inter-
pretation function, we obtain an element ¢ of L. Moreover, since ¢ is a
tautology in every L/ ~p, F' € U, we have that [¢]lr = [1]F and hence
i(¢) =1 =1(1). As i is an injective mapping, we then have that ¢ =1
and thus ¢ is a L-tautology. O

Theorem 2.36 (Completeness). BL is complete. That is, for every
formula ¢, the following three statements are equivalent:

(i) ¢ is provable in BL,
(ii) for every linearly ordered BL-algebra L, ¢ is an L-tautology,
(iii) for every BL-algebra L, ¢ is an L-tautology.

Proof. That (i) implies (ii) is a consequence of Theorem 2.28; (ii) implies
(iii) is Lemma 2.35. Thus, we need only prove that (iii) implies (i).
Assume that ¢ is an L-tautology for every BL-algebra L. From
Lemma 2.30 it follows that the algebra Lg; of the classes of equiva-
lent formulas of BL is a BL-algebra, and hence ¢ is an Lg-tautology.
Let now V be the valuation setting V(p;) = [pi]gL for every proposi-
tional variable. It then follows that V(¢) = [¢]gL = [1]sL, and thus
BL F ¢ = 1, which is the same as BL I ¢; that is, ¢ is provable in
BL. O

This finishes the proof of completeness of the logic BL. To summarize,
we have shown that BL-provable and L-tautology in every BL-algebra
L are equivalent concepts. This, however, is not exactly what our initial
goal was. Initially, we have defined the BL logic only for the BL-algebras
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defined by continuous t-norms over the interval [0,1]; let us call these
t-algebras. 1t would then be desirable to get a stronger theorem stating:

a formula ¢ is BL-provable iff ¢ is a L-tautology for every t-algebra L.

We have shown the “only if” direction of this statement (Lemma 2.13).
The question of whether the other direction holds is still an open prob-
lem: it is unknown whether BL describes a complete axiomatization of
the logics defined by continuous t-norms, or whether there exists a for-
mula that is a tautology in each of these logics, but not for some other
BL-algebra.

Before leaving the study of the basic logic, we briefly look at complete
theories. A theory T is called complete if for every pair of formulas ¢, 1,
it holds that T+ (¢ — ¢) or T F (¢ — ¢).

Lemma 2.37. For every theory T, if Tt ¢, then there exists a consis-
tent complete supertheory T' O T such that T' t/ ¢.

The proof of this lemma is analogous to the one presented for prime
filters (Lemma 2.33). [Exercise?]

We now take a step away from generalities, and focus on specific
instances of the logic, defined by t-norms, and their properties.
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3 T-norm Based Logics

We will now focus on the properties inherent to the fuzzy logic produced
by specific t-norms: first the Lukasiewicz and then the product t-norm.

3.1 tukasiewicz Logic

In this section we look at the specific propositional calculus PC(®y,)
defined by the Lukasiewicz t-norm z®y = max (0, z+y—1). This t-norm
has a precomplement function that is involutive; that is, © © x = x for
all z € [0, 1]. This property will be useful for deriving some interesting
consequences of the calculus.

As explained before, the formula =—¢ — ¢ is in fact a 1-tautology
in this calculus, although it is not a tautology in every BL-algebra (or,
for that matter, in the algebra defined by other t-norms). In fact, it
turns out that this axiom is all that is necessary to have a complete
axiomatization of this calculus.

Definition 3.1. The Lukasiewicz propositional logic (denoted as L) is
the theory that extends BL with the axiom

(ﬂ—\) —|—\¢ — ¢
A
The soundness of this system is an easy consequence of the soundness
of BL and the properties of the Lukasiewicz t-norm. Just as for the
general BL logic, it is possible to prove completeness of this system in a

general setting, based on a sub-class of BL-algebras called MV-algebras,
which stands for “multi-valued” algebras.

Definition 3.2. An MV-algebra is a BL-algebra that additionally sat-
isfies the identity x = ((x = 0) = 0) for every x € L.
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This restriction is the obvious translation from the new axiom to the
algebraic structure.

As done in the previous chapter, one can prove the following propo-
sition.

Proposition 3.3 (Completeness). A formula ¢ is provable in the logic
L iff it is a 1-tautology of L.

(Classical) propositional logic is compact in the sense that a formula
is true in an infinite theory T then it is also true in a finite subtheory
of T'. This is not the case in the logic L.

Exercise. Let T'= {np — ¢ | n € N} U{-p — ¢}, where 1p = p and
(n + 1)p = =(—p&—np). Show that ¢ is true in each model of T, but
not in any finite submodel of T

We have thus far focused on formulas that are absolutely true given a
background theory. However, when reasoning about vagueness, a nat-
ural question that arises is whether one can also reason about partially
true formulas: the theory may contain some partially true formulas,
and one may be interested in proving that a conclusion is also partially
true. For Lukasiewicz logic, this is possible, as we will show next.

The main observation is that, given a valuation V, if V(¢) = r, then
for every formula v it holds that V(¢) > r iff V(¢ — ) = 1. Thus,
we can try to introduce, for every rational number r € [0,1] the truth
constant r: a formula such that V(r) = r for every valuation V. We
will thus have that V(¢) > r iff V(r — ¢) = 1 and V(¢) < r iff
Vi —r)=1.

Notice that the idea of having truth constants has been already used
before: we have defined the constants 0 and 1 before. We are now only
extending this to all possible rational numbers. Indeed, it would be
possible to allow any number in [0, 1] as a constant, but that would pro-
duce an uncountable number of formulas, which is usually undesirable
in a logic.

Definition 3.4. Rational Pavelka Logic (RPL) extends the logic L by
adding the truth constant r for every rational number r. Formulas are
built from propositional variables and truth constants using the same
connectives as L (i.e., —, 1, &, etc.).
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A valuation of the propositional variables extends to arbitrary formu-
las in the obvious way, with V(r) = r for every V,r € Q.

The azioms of RPL are the axioms of L plus the following axioms for
truth constants:

(r—s) = r=s
—_—
-r = 1-r.

The notions of theory, proof, and models are as usual.

A graded formula is a pair (¢,r), where ¢ is a formula and r €
Q N [0,1]; it is just an abbreviation for the formula (r — ¢); that
is, (¢, 7) is true iff ¢ is evaluated to a value greater or equal to r. A

Lemma 3.5. If a theory T proves (¢,7) and (¢ — 1, s), then it proves
(Y, r ® s), where ® is the Lukasiewicz t-norm.

Proof. UTFr — ¢and TFs — (¢ — 1)), then
T+ (r&s) — (p&(¢p — 1)) and thus T F 7 ® 5 — 1. O

Notice that the presence of an axiom in a theory 7" may fail to guar-
antee that a formula is true, but one may still deduce that its truth
value has to be greater than some number 7; in other words, assuming
that all the formulas in T are true may not guarantee truth of ¢ but
only of (r — ¢). The same idea can also be applied to provability, as in
the following definition.

Definition 3.6. Let T be a theory over RPL and ¢ a formula. The
truth degree of ¢ over T is given by

|¢]|7 := inf{V(¢) | V is a model of T'}.
The provability degree of ¢ over T is given by |¢|7 := sup{r | T F (¢,r)}.

We will now proceed to prove completeness of RPL by showing that
the provability and truth degrees of a formula over a theory coincide.
Recall first the deduction theorem: T'U {¢} b ¢ iff T F ¢™ — o for
some n € N, and that every consistent theory has a complete consistent
supertheory (Lemma 2.37). These two results remain valid in RPL,
since the presence of truth constants does not affect their proofs. We
can now prove the following two lemmata.

34



Lemma 3.7. If a theory T does not prove (r — ¢), then T U {¢ — r}
18 consistent.

Proof. Assume on the contrary that T'U {¢ — r} is inconsistent, that
is, TU{¢ — r} F 0. By the deduction theorem, there is an n such
that T F (¢ — r)™ — 0. Recall that T+ (¢ — )" V (r — ¢)" and
hence T'F 0™ V (r — ¢)™, which means that T+ (r — ¢)", yielding a
contradiction. ]

Lemma 3.8. Let T be a consistent and complete theory. Then the
following hold:

(1) For every formula ¢, |p|r =sup{r | TFr — ¢} =inf{s |TF ¢ —
s},

(2) The provability degree commutes with the connectives; that is,

|=¢lr =1 —|¢|r, ¢ = Ylr = || = [Y]r.

In particular, this means that the valuation V(p;) = |pi|r is a model
of T.

Proof. (1) Since for every r, either TH ¢ — r or T Fr — ¢, it suffices
to show that THr — ¢ and T+ ¢ — s implies r < s. Assume on the
contrary that » > s. Then, we know that r = s < 1, but since T proves
r — ¢ and ¢ — s, it also proves r — s; that is, T - ¥ = s. However,
r = s < 1 implies that there is some n such that (r = s)™ = 0 and thus
T is inconsistent.

(2) For —:
|m¢| = sup{r|Thkr— ¢} =sup{r | TFH¢p—1-—r}
= sup{l—s|ThFH¢p—s}=1—inf{s|T+F¢— s}
= 1—|gl.

For =, we use the continuity and other properties of =
|| = || = inf{r |T+¢—r}=>sup{s|TFs—}
= sup{r=sup{s |TFs—¢}|TF¢—>r}
= sup{r=s|TFo¢—r,TFks—}
< sup{r[Ttr— (¢ =)} =[o— 1|
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since T 7= 8 — (r — s), and hence, if T ¢ —rand T - s — 1),
then TH7 = 35— (¢ — ).

Suppose now that the inequality is strict; that is, (|¢| = |¢]) < t <
t' < |¢ — 9| for some rational numbers ¢,#. We can then express t
as r = s for some r < |¢|,s > |[¢|; then T - r — ¢, T F b — s,
and hence T F (¢ — ) — (r = s), and T' F (¢ — ) — t. Since
THt — (¢ — 1), we have T -t/ — t, or equivalently T ¥ = t. But
t' = t < 1. This means that T is inconsistent. We thus have that the
equality holds. O

The completeness of RPL is a simple consequence of these results.

Theorem 3.9. For every theory T and formula ¢, it holds that

8l = |4l

Proof. The fact that |¢|7 < ||¢||r can be shown using the same ar-
guments for showing soundness of the proof system; we thus focus on
showing only the other inequality.

To show that ||¢||r < |¢|r, it suffices to prove that T+ r — ¢ for
every r < ||¢||7: if this holds, then

lplr = sup{r|TFr— ¢}
> sup{r|r < |¢|r}
> ||l

If T/ r — ¢, then by Lemma 3.7 TU{¢ — r} is consistent, and thus by
our previous remark, has a consistent complete supertheory 7”. From
Lemma 3.8 it follows that the valuation V(p;) = |pi|7» is a model of T”
and V(¢ — r) = 1; that is, r > V(¢) = ||[l7r = |||z 0

We have shown earlier that L (and hence RPL) is not compact, ac-
cording to one classical formulation of compactness; however, we will
see that a different formulation of compactness holds for this logic.

Theorem 3.10. Let T be a theory over RPL. If every finite Tp C T
has a model, then T has a model.
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Proof. Assume that T has not model. Then, since RPL is complete, T’
must be inconsistent, and thus 7' F 0. In other words, there is a proof
for O from this theory. Since proofs are finite, this means that only
finitely many axioms from T were used; thus, there is a finite subtheory
To C T that is inconsistent, and hence has no models. ]

3.2 Product Logic

We now focus on the propositional calculus PC(®ry), defined through
the product t-norm z ® y = x - y; we will call this product logic and
denote it as II. Recall that the corresponding residuum is the Goguen
implication and the precomplement is Godel negation. As before, we
will extend the axiomatization of BL to obtain a complete proof system
for this logic in relation to a special class of algebras.

Definition 3.11. The axioms of the logic II are those of BL plus the
two axioms

(1) —=x = ((p&ex = v&ex) = (¢ — 1)),
(I112) ¢ A —¢p — 0.

Lemma 3.12. The azioms (II1) and (I12) are I1-tautologies over the
product t-norm.

Proof. (II1) Let V be a valuation. If V(x) = 0, then V(——x) = 0 and
V(=—x = () = 1. If V(x) > 0, then V(—=—x) = 1. There are two
cases: (i) if V(p&x) < V(p&x), then V(¢) - V(x) < V(¢¥) - V(x)
and as V(x) > 0 it follows that V(¢) < V(¢). Thus, V(o&x —
Bx) = V(p — ) = 1; (i) If V() > V(pex), then V(9) >
V() and thus V(&x — pix) = V(6 — $) = V() /V(®).

(I12) Since in IT = is interpreted as the Godel negation, either V(¢) =0
or V(—¢) = 0.
0

Exercise. Show that the axiom (II2) can be equivalently replaced by
any of the following formulas:

~(¢&o) = =, (¢ = —p) = =p, =PV g
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We now restrict the class of BL-algebras to also satisfy the restrictions
given by the two new axioms of II.

Definition 3.13. A II-algebra (or product algebra) is a BL-algebra
that additionally satisfies:

¢ 0025 ((z®2=>y®2) = (r=1y)), and
e xNex =0.

Notice that II is trivially sound w.r.t. product algebras, since the new
restrictions are simple translations of the axioms added to BL into the
algebraic setting. We now show that these algebras also satisfy some
properties we should expect from any generalization of the product t-
norm.

Exercise. Prove that the following sentences hold in every linearly
ordered product algebra:

(1) if z > 0 then 6z =0,
(2) if 2> 0 then z ® z = y ® z implies x = y, and
(3) if 2 > 0 then z ® z < y ® z implies z < y.

Just as for the logics BL and L, we can show a completeness theorem
for the logic II w.r.t. product algebras.

Proposition 3.14 (Completeness). (1) A formula ¢ is provable in the
product logic 11 iff it is a 1-tautology of II.

(2) Let T be a finite theory over Il and ¢ a formula. T proves ¢ over
the logic 11 iff ¢ is true in every model of T'.

Lukasiewicz logic can be “embeded” into Product logic in the sense
that the Lukasiewicz t-norm can be isomorphically transformed into a
(restricted) product on the interval [a, 1] for any arbitrary, but fixed,
a,0<a<l.

Lemma 3.15. For every a,0 < a < 1, the interval [0,1] with ®p is
isomorphic to [a, 1] with the restricted product t-norm ®, given by T ®,
y = max(a,z - y).
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Proof. Given a € (0,1), we construct the isomorphism f,(z) = a*~%,

which means that £, !(y) = 1 —log, y. We have that

fa(2) ®a foly) = max(a, fo(x) - fu(y)) = max(a7a2—x—y)’

and fu(z ®y) = 1-max(0.z+y=1)  Tn both cases, the result is a if
a

a
r+y<1and 1=(z+y=1) otherwise. OJ

Let now py be a new propositional variable. For each formula ¢ where
po does not appear, we define a translation ¢!l as follows:

o' = po
pl o= poVp; fori#0

(&)t = poV (¢M&y™)
(6= ) = ol >yl

In particular, it holds that (=¢)! := ¢! — py. We show now a cor-
respondence between valuations over the Lukasiewicz and product se-
mantics by means of this translation.

Lemma 3.16. Let V be a valuation of propositional variables (including
po) where V(pg) > 0. Let V', V" be the valuations given by V'(p;) =
max(a, V(p;)) and V"(p;) = £ 10V (pi)) with a = V(pg). For every
formula ¢ not containing py it holds that f,(Vi(¢)) = V(o).

Proof. We prove this by induction on the structure of ¢.

For the atomic formulas, if ¢ = 0, then f,(V{(0)) = f4(0)
V(po) = Vu(0™).
If ¢ = p, then on the one hand, Vi(p™) = V(po V p) = max(a, V(p)) and
on the other f,(V{(p)) = fo(fy *(max(a, V(p))) = max(a, V(p)).

Now for the complex formulas. Let first ¢ = & x. Then

a =

V((v&x)) = Vulpo v (¥"&x™)) = max(a, Vu(¢'&x™))
= max(a, Vu(¢") - V(x'))

39

and fo(V{ (Y&x)) = fa(max(0, V{' () + V{ (x) — 1)). By induction, this
last expression is equal to

fa(max(0, £ (Vu(¥') + fo ' (Va(x™)) — 1))
= fa(max(0,1 —log,(Va(¥") - Vu(x"))))
= max(a, Vn(¥") - Va(x')).

Finally, for ¢ =1 — x we have

Vi(( = x)™") = V(@™ — X,

which is 1 if Vi(¥™) < Vp(x!") and Vi(x)/ Vi (¥') otherwise. On the
other hand,

fa(vfj(w — X)) = fa(min(17 1— Vﬁ(w) + VI/J/(X)))v

which is 1 if V{'(v) < V{ () (which holds iff Vp(¥') < Vi(x™1), from
induction hypothesis plus monotonicity of f,) and otherwise it is

fa(U= £ Vn@™) + £ (Vn(XM)))
= fa(1+log, Vi(¥") — log, Vi (x'))
=Vu(x™)/Vu (™).

O]

From these translations we obtain that tautologies in the logic L can
be translated into tautologies in II; that is, L. can be embedded into II.

Theorem 3.17. Let ¢ be a formula not containing pg. ¢ is a 1-tautology
of L if and only if (=—po) — @' is a I-tautology of TI.

Proof. Suppose first that ¢ is a 1-tautology for L, and let V be a val-
uation. If V(po) = 0, then V(——py — ¢'1) = 1. Otherwise, as ¢ is a
tautology for L, we have that V/(¢) = 1 and thus, from Lemma 3.15 it
follows that Vi(¢™) = 1.

Conversely, if =—py — ¢! is a I-tautology for II, then for every
valuation V it holds that Vi(=—po — ¢") = 1; in particular, for every
valuation where V(pg) > 0, it holds that Vi(¢'') = 1.
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Claim. For every valuation V there exists a valuation W and a con-
stant a,0 < a < 1 such that V(p) = f, (max(a, W(p))) for every propo-
sitional variable p # pg.

Exercise. Prove this claim.

Let now W(po) = a. Then we have that Wi(¢'') = 1 and thus, by
Lemma 3.15, Vi (¢) = 1, which means that ¢ is a 1-tautology for L. [J

Exercise. Show that every linearly ordered MV-algebra is an algebra
of the form MV’(L,a) where L is a linearly ordered product algebra,
a € L with Or, < a < 1, the domain of MV'(L, a) is the interval [a, 1r].

Intuitively, this theorem expresses that the product logic II is more
difficult than the Lukasiewicz logic L: everything that can be done in
IT can also be done in L through via this embedding. However, the
other direction does not hold. For instance, with Lukasiewicz logic, we
were able to express also formulas that are partially true (RPL), but an
analogous of RPL over II is not possible.

Consider the system analogous to RPL over the logic II and let T" =
{p > r|r>0}and ¢ =p — 0. Then any model V of T" must satisfy
V(p) = 0, and hence ||¢||r = 1. However, T' I/ p — 0: if this was the
case, then p — 0 would be provable from a finite subtheory Ty of T,
but then, let ro = min{r | p — r € Ty}; then, there is a model V of Tj
with V(p) = 19 > 0. Moreover, |¢p|r = 0 since if T s — (p — 0) for
some s, then it holds that 7' = p — (s — 0) (by counterpositive) and
thus 7'+ p — 0 by the definition of the Goguen implication.

In fact, in the product logic it is not even possible to express formulas
that must be interpreted in an intermediate truth value a,0 < a < 1.

Lemma 3.18. Let T be a theory over 11, then the following two prop-
erties hold:

1. if TU{¢} is inconsistent, then T F —¢,

2. if T is consistent, then for every ¢ at least one of TU{¢}, TU{—~¢}
1s consistent.

Proof. 1. if T U {¢} is inconsistent, then for some n,T + ¢" — 0,
but then 7'+ ¢ — 0 (See exercise below)
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2. assume that both theories are inconsistent, then T F —=¢ and T +
——¢. then we have that T+ —¢p&——¢, and thus T + 0.
O

Exercise. Finish the proof of 1. by showing that II - (¢&¢ — 0) —
(¢ — 0).

Corollary 3.19. For every consistent theory T over 11 and every for-
mula ¢, there is a model V of T such that V(¢) € {0, 1}.
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4 Wrap Up

We have studied a family of logics capable of dealing with different
degrees of truth. All these logics, whose semantics are based on t-norms,
share some characteristics that are summarized through the basic logic
BL. However, the specific properties given by every different t-norm
are well worth studying. For instance, every t-norm can express also
the Godel t-norm min, but its residuum is not so easy to simulate.
Lukasiewicz logic can be easily extended for dealing with other truth
constants; a property that is not shared by neither Gédel nor product
logic.

Depending on the application in hand, some of these properties may
be more useful than others. In a classical approach to logic, one may
desire that conjunction is idempotent (Godel logic); but non-idempotent
logics may be useful for giving emphasis to some concepts (i.e., when
one repeats a property, one is actually stating that it is satisfied to
a high degree). Involutive negation is also an intuitive property, only
satisfied by Lukasiewicz semantics.

If logic is used for knowledge representation, or in general for Al
applications, one has to keep these variations in mind, when chosing the
adequate semantics to be considered. These also influence the viability
and complexity of reasoning within the formalism.
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