

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Fuzzy Logic

Exercise Sheet 3

Dr. Rafael Peñaloza Nyssen / Dipl.-Math. Felix Distel Summer Semester 2011

Exercise 1

Using only modus ponens and the axioms (A1)-(A8) prove the following formulas in BL.

a)
$$(\varphi \to \psi) \to (\varphi \to (\varphi \land \psi))$$

b)
$$\varphi \rightarrow \neg \neg \varphi$$

Exercise 2

Remember that, as an algebraic structure, a lattice is defined as a triple (L, \land, \lor) , where *L* is a non-empty set and \land and \lor are binary operators that are associative, commutative and absorbing¹. On the set *L* the binary relation \leq is defined as

$$a \leq b$$
 iff $a \wedge b = a$.

Prove that

- a) The relation \leq is an order relation, i.e. it is reflexive, transitive and antisymmetric.
- b) The infimum of *a* and *b* with respect to \leq is $a \wedge b$.
- c) The supremum of *a* and *b* with respect to \leq is $a \lor b$.

Exercise 3

Check whether the following structures are residuated lattices.

- a) {{0,1}ⁿ, \land , \lor , \land , \rightarrow , 0ⁿ, 1ⁿ} for some fixed natural number *n* where \lor , \land , \rightarrow denote the boolean operators taken pointwise.
- b) {2^M, ∪, ∩, ∆, /, M, Ø} where M is a finite set, ∪, ∩ and ∆ denote union, intersection and symmetric difference, respectively, and / is defined as A / C := C \ A. Hint: Notice the sequence in which ∩ and ∪ appear in the tuple. How does this affect the order relation defined in Exercise 2?

¹Operators \lor and \land are called absorbing if they satisfy $a \lor (a \land b) = a$ and $a \land (a \lor b) = a$

Exercise 4

Show that every divisible linearly ordered residuated lattice is a BL-algebra. Hint: use Lemma 2.26.