

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

# **Automata and Logic**

#### **Exercise Sheet 4**

Prof. Dr.-Ing. Franz Baader Summer Semester 2012

# Exercise 17

Let V be an M-variety. Show that  $L(V)_{\Sigma}$  is closed under union *without* using Thm. 1.22 from the lecture.

# Exercise 18

Let  $\Sigma$  be an alphabet. Prove or refute the following claims:

- a) Every regular language  $L \subseteq \Sigma^*$  is accepted by its syntactic monoid.
- b) If  $L \subseteq \Sigma^*$  is accepted by a finite group, then the syntactic monoid of L is a finite group.
- c) For every regular language  $L \subseteq \Sigma^*$ , the syntactic monoid  $M_L$  is the smallest monoid accepting *L*; i.e. for every monoid *M* accepting *L*, we have  $|M_L| \leq |M|$ .
- d) For a word  $w = a_1 \dots a_n$ , let  $\overleftarrow{w}$  denote the mirror image of w, i.e.  $\overleftarrow{w} = a_n \dots a_1$ . For a language  $L \subseteq \Sigma^*$ , we define  $\overleftarrow{L} := {\overleftarrow{w} \mid w \in L}$ . **Claim:** If the minimal automaton for L has n states, then the minimal automaton for  $\overleftarrow{L}$  has also n states.

## Exercise 19

Let V be the M-variety of all commutative finite groups. Show that there exists a language  $L \subseteq \{a\}^*$  such that  $L \in L(V)_{\{a\}}$  but  $L \notin L(V)_{\{a,b\}}$ .

## Exercise 20

Prove or refute the following: There is a language  $L \subseteq \{a, b\}^*$  such that its syntactic semigroup  $S_L$  and its syntactic monoid  $M_L$  are isomorphic.

## Exercise 21

For each of the following words over the alphabet  $\{0, 1\}^k$ , give a corresponding interpretation over the predicate symbols  $P_1, \ldots, P_k$  as discussed in the lecture:

$$k = 2: (1, 1), (1, 1), (0, 1), (1, 0)$$
  

$$k = 3: (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)$$
  

$$k = 3: (1, 1, 0), (1, 0, 1), (1, 1, 1), (1, 1, 0)$$

Describe all interpretations that correspond to words of the language  $L(((0, 1) \cdot (1, 0))^+) \subseteq (\{0, 1\}^2)^+$ .

#### Exercise 22

Let  $\Sigma = \{a, b\}$ . For each of the following regular expressions  $r_i$ , give a first-order formula  $\phi_i$  such that  $L(r_i) = L(\phi_i)$ .

- a)  $r_1 = \Sigma^*$ ,
- b)  $r_2 = \varepsilon$ ,
- c)  $r_3 = (abb^*)^*$ ,
- d)  $r_4 = a^*b^* + b^*a^*$ , and
- e)  $r_5 = (aaa \cdot \Sigma^*) + b^*$ .