Exercise 17
Let V be an M-variety. Show that $L(V)_\Sigma$ is closed under union without using Thm. 1.22 from the lecture.

Exercise 18
Let Σ be an alphabet. Prove or refute the following claims:

a) Every regular language $L \subseteq \Sigma^*$ is accepted by its syntactic monoid.

b) If $L \subseteq \Sigma^*$ is accepted by a finite group, then the syntactic monoid of L is a finite group.

c) For every regular language $L \subseteq \Sigma^*$, the syntactic monoid M_L is the smallest monoid accepting L; i.e. for every monoid M accepting L, we have $|M_L| \leq |M|$.

d) For a word $w = a_1 \ldots a_n$, let \overline{w} denote the mirror image of w, i.e. $\overline{w} = a_n \ldots a_1$. For a language $L \subseteq \Sigma^*$, we define $\overline{L} := \{ \overline{w} \mid w \in L \}$. **Claim:** If the minimal automaton for L has n states, then the minimal automaton for \overline{L} has also n states.

Exercise 19
Let V be the M-variety of all commutative finite groups. Show that there exists a language $L \subseteq \{a\}^*$ such that $L \in L(V)_{\{a\}}$ but $L \notin L(V)_{\{a,b\}}$.

Exercise 20
Prove or refute the following: There is a language $L \subseteq \{a, b\}^*$ such that its syntactic semigroup S_L and its syntactic monoid M_L are isomorphic.

Exercise 21
For each of the following words over the alphabet $\{0, 1\}^k$, give a corresponding interpretation over the predicate symbols P_1, \ldots, P_k as discussed in the lecture:

- $k = 2$: $(1, 1), (1, 0), (0, 1), (1, 0)$
- $k = 3$: $(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)$
- $k = 3$: $(1, 1, 0), (1, 0, 1), (1, 1, 1), (1, 1, 0)$

Describe all interpretations that correspond to words of the language $L(((0, 1) \cdot (1, 0))^+) \subseteq (\{0, 1\}^2)^+$.
Exercise 22

Let $\Sigma = \{a, b\}$. For each of the following regular expressions r_i, give a first-order formula ϕ_i such that $L(r_i) = L(\phi_i)$.

a) $r_1 = \Sigma^*$,
b) $r_2 = \varepsilon$,
c) $r_3 = (a bb^*)^*$.
d) $r_4 = a^* b^* + b^* a^*$, and
e) $r_5 = (aaa \cdot \Sigma^*) + b^*$.