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Exercise 23

Complete the proof of Lemma 2.2 from the lecture by showing that the class (Bp)y is closed
under union.

Exercise 24

Let (S, o) be a finite semigroup, m € S, and i, k, ¢ € N\ {0} defined as in the proof of Thm. 2.4.
Show that if k is minimal with the property described in the proof, then

({mi, o m"+k71}, o, me)

is a group. Is ({m’, ..., m'T*=1} o, m®) still a group if k is not minimal?

Exercise 25

Let X := {a, b} and L4, L, be the languages accepted by the automata displayed below. Use
the proof of Cor. 2.10 from the lecture to show that Ly ¢ (By)x and Ly € (Bp)s.

Moreover, represent L, as a Boolean combination of languages from the set

{uX v e }U{Xu|ue X"}




Exercise 26
Prove or refute the following:
a) For every alphabet X and word w € ¥*, we have {w} € (Bp)sx.

b) For every two alphabets ¥ and ¥’ with ¥ C ¥/, and every language L C ¥*, we have: if
Le (Bo)z, then L € (BO)Z"

c) Let (M, o, 1) be a monoid, where 1 is the only idempotent element of M. Then (M, o, 1)
is a group.

d) Let (S, o) be a semigroup with e € S being idempotent. Then (eSe, o, €) is the largest
submonoid of S with e as unit element.

e) Let (S,0) € D. If there exists an element s € S such that (S, o, s) is a monoid, then
IS|=1.

Exercise 27
Let V be the class of all finite semigroups S such that for all idempotent elements e € S, we
have Se = e. Show that V is an S-variety ultimately defined by

yx = x" (n>1).

Exercise 28
LetX :={a, b,c,d}.
a) For L C X* with

L:={w e X*| w starts with aor b} N
{w € ¥* | |w| > 3 and w starts and ends with the same symbol},

give a quantifier-free formula ¢ using the signature {Q,, Qp, Qc, Ry, <, min, max, s, p}
such that L(¢) = L.

b) Let
¢ = =(=Qa(s(s(p(s(min))))) V (s(min) < p(p(max)))).
Use the method described in the proof of Prop. 2.11 to describe L(¢) as a Boolean
combination of languages from the set {uX* | v € ¥} U{X*u | v € T*}.



