

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Automata and Logic

Exercise Sheet 6

Prof. Dr.-Ing. Franz Baader Summer Semester 2012

Exercise 29

Let Σ be an alphabet. A language $L \subseteq \Sigma^*$ is called *definite* for Σ if there exists an $n \in \mathbb{N}$ such that we have for all $w \in L$:

if w = uv with |u| = n, then $u\Sigma^* \subseteq L$.

Show that $L \subseteq \Sigma^*$ is definite for Σ iff L is a Boolean combination of languages of the form $\{w\Sigma^* \mid w \in \Sigma^*\}$.

Exercise 30

Let $\Sigma = \{0, 1\}^k$. Show that the following is equivalent:

- *L* is definite for Σ.
- There exists a quantifier-free closed first-order formula ϕ over the signature $\{P_1, \dots, P_k, <, \min, s\}$ with $L(\phi) = L \setminus \{\varepsilon\}$.

Exercise 31

Let Σ , Γ be two alphabets, and let $L \subseteq \Sigma^*$. Prove or refute the following:

- a) $L \in \mathsf{SF}_{\Sigma} \implies L \in \mathsf{SF}_{\Sigma \cup \Gamma}$
- b) $L \in SF_{\Sigma \cup \Gamma} \implies L \in SF_{\Sigma}$

Exercise 32

For $\Sigma = \{a, b\}$, check whether the following languages are star-free:

a)
$$L_1 = (ab)^3$$

- b) $L_2 = \{ w \mid |w|_a = 3k \text{ for some } k \in \mathbb{N} \}$
- c) $L_3 = a(aba)^*b$

Use Thm. 3.6 from the lecture or give a star-free description of the language.