



# **Automata and Logic**

# **Exercise Sheet 7**

Prof. Dr.-Ing. Franz Baader Summer Semester 2012

### **Exercise 33**

Let  $\Sigma=\{a\}$ . Recall from the lecture that  $L_{k,n}$  denotes the set of all first-order formulae (over the non-logical symbols =, <, and  $Q_a$ ) containing k free variables and having quantifier depth at most n. For the following combinations of k, n, determine a *finite* set  $\Gamma_{k,n}$  such that for every formula  $\phi \in L_{k,n}$ , there is a formula  $\psi \in \Gamma_{k,n}$  with  $\phi \equiv \psi$ . Determine also the equivalence classes of  $\equiv_{k,n}$ .

- a) k = 1, n = 0;
- b) k = 2, n = 0;
- c) k = 0, n = 1; and
- d) k = 1, n = 1.

#### **Exercise 34**

Give the formulae  $\phi_W$  for each equivalence class W of  $\equiv_{2,0}$ . Then, determine a finite disjunction of formulae  $\phi_W$  for  $\equiv_{2,0}$ -classes, which is equivalent to the formulae:

- a) true;
- b)  $\neg (x < y) \lor x = y$ ; and
- c) false.

### **Exercise 35**

Consider the Ehrenfeucht-Fraïssé games on the words

- a) ab and ba; and
- b) aaabaaa and aabaaa.

Determine the  $k \in \{1, ..., 4\}$  such that Player I has a winning strategy in k moves.

# **Exercise 36**

Consider the Ehrenfeucht-Fraïssé games on the words  $a^i$  and  $a^j$  with i < j.

- a) Describe an optimal winning strategy for Player I, i.e. a strategy such that Player I wins with a minimal number of moves.
- b) Prove that Player I has a winning strategy on  $a^i$  and  $a^j$  (with i < j) in m moves if  $i < 2^m 1$ .