

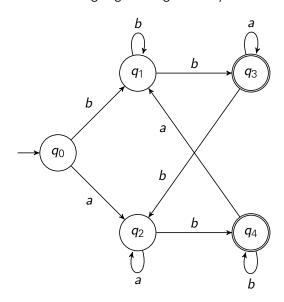
Automata and Logic

Exercise Sheet 9

Prof. Dr.-Ing. Franz Baader Summer Semester 2012

Exercise 41

Let $\Sigma = \{a, b\}$, and $L \subseteq \Sigma^{\omega}$ be the ω -language recognised by the following Büchi automaton:



Find a number $n \ge 1$ and regular languages $U_1, V_1, ..., U_n, V_n \subseteq \Sigma^*$ such that

$$\bigcup_{i=1}^n U_i \cdot V_i^{\omega} = L.$$

Exercise 42

Let Σ be an alphabet. Prove the following:

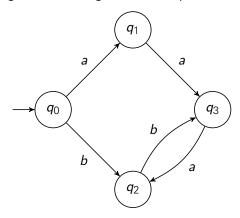
- a) If $L \subseteq \Sigma^+$ is regular, then there exists a non-deterministic finite automaton \mathcal{A} with only one final state such that $L = L(\mathcal{A})$.
- b) If $L \subseteq \Sigma^*$ is regular, then there exists a non-deterministic finite automaton \mathcal{A} with at most *two* final states such that $L = L(\mathcal{A})$.
- c) There is $no k \ge 1$ such that the following holds:

If $L \subseteq \Sigma^{\omega}$ is Büchi recognisable, then there exists a Büchi automaton \mathcal{A} with at most k final states such that $L = L_{\omega}(\mathcal{A})$.

Hint: Consider the languages $a^{\omega} \cup b^{\omega}$, $a^{\omega} \cup b^{\omega} \cup c^{\omega}$,

Exercise 43

Consider Büchi automata using the following transition system:



Check whether the recognised ω -language is empty for the following sets of final states:

a)
$$F = \{q_0, q_1\}$$

b)
$$F = \{q_2, q_3\}$$

c)
$$F = \{q_1, q_3\}$$

Exercise 44

For a finite automaton \mathcal{A} , let \mathcal{A}_{det} denote the minimal deterministic finite automaton such that $L(\mathcal{A}) = L(\mathcal{A}_{det})$. Prove or refute the following:

a)
$$\lim L(A) = L_{\omega}(A_{\text{det}})$$

b)
$$L_{\omega}(\mathcal{A}) \subseteq L_{\omega}(\mathcal{A}_{\mathsf{det}})$$

c)
$$L_{\omega}(\mathcal{A}_{\text{det}}) \subseteq L_{\omega}(\mathcal{A})$$

Exercise 45

Let $(r_n)_{n\geq 0}$ be a sequence of real numbers. Show that there exists an infinite sub-sequence of $(r_n)_{n\geq 0}$ that is

- strictly increasing, or
- strictly decreasing, or
- constant.