

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Automata and Logic

Exercise Sheet 10

Prof. Dr.-Ing. Franz Baader Summer Semester 2012

Exercise 46

Let $\Sigma = \{a, b\}$, and $L \subseteq \Sigma^{\omega}$ be the ω -language recognised by the following Büchi automaton:

Use the method presented in the lecture to construct a Büchi automaton that recognises the language $\Sigma^{\omega} \setminus L$.

Exercise 47

Prove that for every ω -regular language L, there is a Büchi automaton \mathcal{A} with $L_{\omega}(\mathcal{A}) = L$ such that from every state q of \mathcal{A} , there are *at most two* transitions using the same alphabet symbol.

Exercise 48

Let $\Sigma := \{a, b, c\}$. Consider the following transition system:

We derive four Muller automata A_1 , A_2 , A_3 , and A_4 by selecting the sets of final states \mathcal{F}_1 , \mathcal{F}_2 , \mathcal{F}_3 , and \mathcal{F}_4 as follows:

- a) $\mathcal{F}_1 := \{\{q_0, q_3\}, \{q_3\}\};$
- b) $\mathcal{F}_2 := \{\{q_0, q_1\}, \{q_2\}\};$

c) $\mathcal{F}_3 := \{\{q_0, q_1, q_2\}\};$ and

d) $\mathcal{F}_4 := \{\{q_0\}, \{q_0, q_1\}, \{q_2\}, \{q_0, q_1, q_2\}\}.$

Determine the ω -languages $L_{\omega}(\mathcal{A}_1)$, $L_{\omega}(\mathcal{A}_2)$, $L_{\omega}(\mathcal{A}_3)$, and $L_{\omega}(\mathcal{A}_4)$.

Exercise 49

For each of the following languages L_i , give an S1S-formula ϕ_i such that $L_{\omega}(\phi_i) = L_i$:

- a) $L_1 = (abb^*)^{\omega}$,
- b) $L_2 = ((aa)^+(bb)^+)^{\omega}$, and
- c) $L_3 = (aaa)^+ b(a \cup b)^{\omega}$.

Exercise 50

Transform the S1S-formula $P(\underline{0})$ into an equivalent S1S₀-formula.

Exercise 51

Let $L := (a^+b)^{\omega} \cup (b^+a)^{\omega}$. Use the proof of Thm. 5.4 to construct a closed S1S-formula ϕ with $L_{\omega}(\phi) = L$.

Exercise 52

A *Rabin automaton* is a tuple $\mathcal{A} := (Q, \Sigma, I, \Delta, \Omega)$ where Q, Σ, I , and Δ are defined as for non-deterministic Büchi automata, and $\Omega := \{(F_1, G_1), \dots, (F_n, G_n)\}$ is a finite set of pairs (F_i, G_i) such that $F_i, G_i \subseteq Q$. For a word α , let path_{\mathcal{A}} (α) denote the set of all paths in \mathcal{A} labelled with α . For a path $p \in \text{path}_{\mathcal{A}}(\alpha)$, let $\inf(p)$ denote the set of all states that are visited infinitely often. The ω -language $L_{\omega}(\mathcal{A})$ recognised by a Rabin automaton is defined as

 $L_{\omega}(\mathcal{A}) := \{ \alpha \in \Sigma^{\omega} \mid \exists i \in \{1, ..., n\} \exists p \in \mathsf{path}_{\mathcal{A}}(\alpha) \colon \mathsf{inf}(p) \cap F_i \neq \emptyset \land \mathsf{inf}(p) \cap G_i = \emptyset \}.$

Show that every language recognised by a Rabin automaton is also recognised by a Büchi automaton by constructing for a given Rabin automaton A, an S1S-formula ϕ_A defining the language $L_{\omega}(A)$.