

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Automata and Logic

Exercise Sheet 12

Prof. Dr.-Ing. Franz Baader Summer Semester 2012

Exercise 58

Let $\Sigma = \{a, b\}$ be an alphabet with two binary symbols and

 $L := \{t \in \mathbf{T}_{\Sigma}^{\omega} \mid \text{there is a path in } t \text{ containing the symbol } a \text{ only finitely often} \}.$

- a) Is L Rabin-recognisable?
- b) Is L Büchi-recognisable?

Exercise 59

Let Σ be an alphabet (with arity function) containing at least two binary symbols f and g. Prove or refute that the ω -tree language $L = \{f(t, t) \mid t \in \mathbf{T}_{\Sigma}^{\omega}\}$ is Büchi-recognisable.

Exercise 60

Let Σ be an alphabet of binary symbols.

• For each ω -tree $t \in \mathbf{T}_{\Sigma}^{\omega}$, we define a language of ω -words $path(t) \subseteq \Sigma^{\omega}$ as follows:

 $path(t) := \{ \alpha \in \Sigma^{\omega} \mid \text{there is a path } i_0 i_1 i_2 \dots \text{ in } t \text{ such that } t(i_0 \dots i_n) = \alpha(n) \text{ for all } n \in \mathbb{N} \}.$

For $B \subseteq \mathbf{T}_{\Sigma}^{\omega}$, let $path(B) := \bigcup_{t \in B} path(t)$.

• For a language $L \subseteq \Sigma^{\omega}$ of ω -words, let tree $(L) := \{t \in \mathbf{T}_{\Sigma}^{\omega} \mid \mathsf{path}(t) \subseteq L\}$.

Prove or refute:

- a) tree(path(B)) = B
- b) path(tree(L)) = L
- c) If B is Büchi-recognisable, then path(B) is also Büchi-recognisable.
- d) If path(B) is Büchi-recognisable, then B is also Büchi-recognisable.
- e) If L is Büchi recognisable, then tree(L) is also Büchi-recognisable.