

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Introduction to Complexity Theory

Exercise Sheet 2

Dr. Rafael Peñaloza Summer Semester 2012

Exercise 4

Determine which of the following statements are correct. Explain your decision.

- a) $2n \in O(n), 2n \in o(n), 1 \in o(n)$
- b) $n \in \mathcal{O}(n \cdot \log n)$, $n \cdot \log n \in o(n^2)$

c)
$$2^{2^n} \in \mathcal{O}(2^n)$$
, $2^{2n} \in o(2^n)$

- d) $4^n \in \mathcal{O}(2^n), 4^n \in 2^{\mathcal{O}(n)}$
- e) $f(n) \in o(g(n))$ implies $f(n) \in \mathcal{O}(g(n))$ and $g(n) \notin \mathcal{O}(f(n))$
- f) Show that the following two functions are a counterexample against the converse of e):
 - $f(n) = 0.5 \cdot n;$

•
$$g(n) = \begin{cases} 2^n & \text{if } n \text{ is even} \\ n & \text{if } n \text{ is odd} \end{cases}$$

Exercise 5

Let $f, g: \mathbb{N} \to \mathbb{N}$. We write $f \in \Theta(g)$ if $f \in \mathcal{O}(g)$ and $g \in \mathcal{O}(f)$. Show that if p(n) is a polynomial of degree d, then $p(n) \in \Theta(n^d)$.

Exercise 6

Devise a non-deterministic Turing machine that accepts the following language *L* over $\Sigma := \{a, b\}$. For each $w_1 w_2 \dots w_n \in L$, there is a position *i*, $1 \le i \le n - 2$, such that $w_i = a$ and $w_{i+2} \ne b$.

Exercise 7

Finish the proof of Thm. 2.4 from the lecture by showing that

$$(d^{T(n)+1}-1) \cdot c \cdot T(n) \in 2^{\mathcal{O}(T(n))}$$

Exercise 8

Show that

- a) the functions $f_1(n) = 2n$ and $f_2(n) = n^2$ are time-constructible; and
- b) the functions $g_1(n) = 2^n$ and $g_2(n) = n!$ is space-constructible.