

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Introduction to Complexity Theory

Exercise Sheet 6

Dr. Rafael Peñaloza Summer Semester 2012

Exercise 20

For each of the following statements, say whether it is true or false. Justify your answers.

- a) $3SAT \in PSPACE$;
- b) SAT \leq_p CLIQUE;
- c) CLIQUE \leq_p SAT;
- d) LOGSPACE \neq EXPTIME; and
- e) if $L \leq_p L'$ and L' is NP-hard, then L is NP-hard.

Exercise 21

The subset-sum problem is defined as follows.

SUBSET-SUM := { $(S, t) \mid S = \{x_1, \dots, x_k\}$ and there is a $\{y_1, \dots, y_\ell\} \subseteq S$ such that $\sum_{i=1}^{\ell} y_i = t$ }.

Prove that SUBSET-SUM is NP-complete.

Exercise 22

HALF-CLIQUE is the problem to decide, given a graph *G* with $n \ge 1$ nodes, whether *G* contains a clique of size $\lfloor n/2 \rfloor$. Prove that HALF-CLIQUE is NP-complete.

Exercise 23

Prove Lemma 4.14 from the lecture: Let C be a complexity class closed under polynomial-time reductions. If *L* is *C*-hard and $L \leq_p L'$, then *L'* is *C*-hard.

Exercise 24

Complete the proof of Thm. 4.13 from the lecture by showing that *M* accepts *w* iff $\phi_w := \phi_{ini} \wedge \phi_{move} \wedge \phi_{keep} \wedge \phi_{acc} \wedge \phi_{aux}$ is satisfiable.