Automata and Logic

Exercise Sheet 1

Dr. rer. nat. Rafael Peñaloza
Summer Semester 2013

Exercise 1

Let $\Sigma=\{a, b\}$ be an alphabet and $\alpha:=a^{+} b^{*}+b^{+} a^{*}$ a regular expression over Σ. Give a regular expression β for the the complement language of α, i.e. β describes the set of words over Σ that are not expressed by α.

Exercise 2

Let \mathcal{A} be a non-deterministic automaton $\mathcal{A}:=\left(\left\{q_{0}, q_{1}, q_{2}\right\},\{a, b\},\left\{q_{0}\right\}, \Delta,\left\{q_{1}, q_{2}\right\}\right)$ with Δ given by the following transition system:

Apply the power-set construction to \mathcal{A} in order to obtain a deterministic automaton that accepts the same language as \mathcal{A}.

Exercise 3

For a language $L \subseteq \Sigma^{*}$, the Nerode right congruence ρ_{L} is defined as follows. For $u, v \in \Sigma^{*}$, we have:

$$
u \rho_{L} v \text { iff for all } w \in \Sigma^{*}, u w \in L \Leftrightarrow v w \in L \text {. }
$$

Let $\mathcal{A}_{L}:=\left(Q_{L}, \Sigma, q_{L}, \delta_{L}, F_{L}\right)$ be a deterministic automaton where:

- $Q_{L}:=\left\{[u]_{\rho_{L}} \mid u \in \Sigma^{*}\right\}$ where $[u]_{\rho_{L}}:=\left\{v \in \Sigma^{*} \mid u \rho_{L} v\right\}$,
- $q_{L}:=[\varepsilon]_{\rho_{L}}$ where ε denotes the empty word,
- $\delta_{L}\left([u]_{\rho_{L}}, a\right):=[u a]_{\rho_{L}}$ for $u \in \Sigma^{*}, a \in \Sigma$,
- $F_{L}:=\left\{[u]_{\rho_{L}} \mid u \in L\right\}$.

Show the following for regular languages L :
a) \mathcal{A}_{L} is well-defined.
b) \mathcal{A}_{L} is minimal (w.r.t. the number of states), i.e. for every deterministic automaton $\mathcal{A}=\left(Q, \Sigma, q_{0}, \delta, F\right)$ with $L(\mathcal{A})=L$, we have $\left|Q_{L}\right| \leq|Q|$.

Exercise 4

Let \mathcal{A} be the automaton that accepts words over the alphabet $\Sigma:=\{a, b\}$ described by the following transition system:

Construct an automaton \mathcal{A}^{\prime} such that $L\left(\mathcal{A}^{\prime}\right)=L(\mathcal{A})$ and \mathcal{A}^{\prime} is minimal.

Exercise 5

Prove the following by giving a decision procedure:
a) The emptiness problem for regular languages is decidable.
b) The inclusion problem for regular languages is decidable.

