

Automata and Logic

Exercise Sheet 1

Dr. rer. nat. Rafael Peñaloza Summer Semester 2013

Exercise 1

Let $\Sigma = \{a, b\}$ be an alphabet and $\alpha := a^+b^* + b^+a^*$ a regular expression over Σ . Give a regular expression β for the the complement language of α , i.e. β describes the set of words over Σ that are not expressed by α .

Exercise 2

Let \mathcal{A} be a non-deterministic automaton $\mathcal{A} := (\{q_0, q_1, q_2\}, \{a, b\}, \{q_0\}, \Delta, \{q_1, q_2\})$ with Δ given by the following transition system:

Apply the power-set construction to A in order to obtain a *deterministic* automaton that accepts the same language as A.

Exercise 3

For a language $L \subseteq \Sigma^*$, the *Nerode right congruence* ρ_L is defined as follows. For $u, v \in \Sigma^*$, we have:

$$u\rho_L v$$
 iff for all $w \in \Sigma^*$, $uw \in L \Leftrightarrow vw \in L$.

Let $A_L := (Q_L, \Sigma, q_L, \delta_L, F_L)$ be a deterministic automaton where:

- $Q_L := \{[u]_{\rho_L} \mid u \in \Sigma^*\}$ where $[u]_{\rho_L} := \{v \in \Sigma^* \mid u\rho_L v\}$,
- $q_L := [\varepsilon]_{\rho_l}$ where ε denotes the empty word,
- $\delta_L([u]_{\varrho_L}, a) := [ua]_{\varrho_L}$ for $u \in \Sigma^*, a \in \Sigma$,
- $F_L := \{ [u]_{\rho_L} \mid u \in L \}.$

Show the following for regular languages *L*:

a) A_L is well-defined.

b) A_L is minimal (w.r.t. the number of states), i.e. for every deterministic automaton $A = (Q, \Sigma, q_0, \delta, F)$ with L(A) = L, we have $|Q_L| \leq |Q|$.

Exercise 4

Let \mathcal{A} be the automaton that accepts words over the alphabet $\Sigma := \{a, b\}$ described by the following transition system:

Construct an automaton A' such that L(A') = L(A) and A' is minimal.

Exercise 5

Prove the following by giving a decision procedure:

- a) The *emptiness problem* for regular languages is decidable.
- b) The inclusion problem for regular languages is decidable.