Automata and Logic

Exercise Sheet 2
Dr. rer. nat. Rafael Peñaloza
Summer Semester 2013

Exercise 6
Prove that the language \(L := \{ a^n b^n \mid n \geq 0 \} \) is not regular using Nerode’s Theorem.

Exercise 7
Let \(M := \{ 1, m \} \) with \(1 \neq m \). Determine all operations \(\circ \) such that \((M, \circ, 1)\) is a monoid.

Exercise 8
Consider the monoid \((\mathbb{Z}, +, 0)\) and the following relations on \(\mathbb{Z} \), where \(3 \mid z \) denotes that \(z \) is divided by 3 without remainder.

- \(z_1 R_1 z_2 \) iff \(3 \mid (z_1 - z_2) \);
- \(z_1 R_2 z_2 \) iff \(3 \mid z_1 \) and \(3 \mid z_2 \), or \(3 \nmid z_1 \) and \(3 \nmid z_2 \).

For each \(z \in \mathbb{Z} \), \([z]_i\) denotes the equivalence class of \(z \) w.r.t. the relation \(R_i \). We now define the monoids \((M_i, \circ_i, 1_i)\) for \(i \in \{1, 2\} \) as follows:

- \(M_i := \{ [z]_i \mid z \in \mathbb{Z} \} \)
- \([z]_i \circ_i [z']_i := [z + z']_i\)
- \(1_i := [0]_i\)

Prove the following:

a) \(R_1 \) and \(R_2 \) are both equivalence relations.

b) \(R_1 \) is a congruence relation, but \(R_2 \) is not.

c) \((M_1, \circ_1, 1_1)\) is well-defined, but \((M_2, \circ_2, 1_2)\) is not.

Exercise 9
Let \(\mathcal{A} = (Q, \Sigma, q_0, \delta, F) \) be a deterministic finite automaton. In the lecture, we defined the relations \(\sim_\mathcal{A}, \sim_0, \sim_1, \ldots \subseteq Q \times Q \) as follows:

- \(q \sim_\mathcal{A} q' \) iff \(L(A_q) = L(A_{q'}) \);
- \(q \sim_0 q' \) iff \(\{ q, q' \} \subseteq F \) or \(\{ q, q' \} \cap F = \emptyset \);
- \(q \sim_{i+1} q' \) iff \(q \sim_i q' \) and \(\delta(q, a) \sim_i \delta(q', a) \) for all \(a \in \Sigma \).
Prove that there exists an $n \in \mathbb{N}$ such that $\sim_n = \sim_A$.

Exercise 10

Consider the monoids $M_i := (\{1, a, b\}, \circ_i, 1)$, for $i \in \{1, 2\}$, where \circ_1 is given by the following table:

<table>
<thead>
<tr>
<th>\circ_1</th>
<th>1</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>a</td>
<td>b</td>
</tr>
</tbody>
</table>

and $x \circ_2 y := y \circ_1 x$ for all $x, y \in \{1, a, b\}$.

For each $i \in \{1, 2\}$, find a regular language $L_i \subseteq \{a, b\}^*$ such that M_i is the syntactic monoid of L_i, or prove that no such language exists.

Exercise 11

Let Σ be an alphabet and $(M, \circ, 1)$ a monoid. Prove that every function $f : \Sigma \to M$ can be uniquely extended to a (monoid) homomorphism $\Phi : \Sigma^* \to M$.