

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Automata and Logic

Exercise Sheet 3

Dr. rer. nat. Rafael Peñaloza Summer Semester 2013

Exercise 12

Let $\Sigma := \{a, b\}, M := \{0, 1, 2\}$, and let $\circ : M \times M \to M$ be defined as $x \circ y := (x + y) \mod 3$. We define mappings $\Phi, \Phi' : \Sigma^* \to M$ by setting $\Phi(w) := |w| \mod 3$ and $\Phi'(w) := |w|_a \mod 3$, where |w| denotes the *length* of w and $|w|_a$ the number of occurrences of the symbol a in w.

- a) Show that both Φ and Φ' are monoid homomorphisms from $(\Sigma^*, \cdot, \varepsilon)$ into $(M, \circ, 0)$.
- b) For each of the languages $\Phi^{-1}(\{0,2\})$, $\Phi^{-1}(\{1\})$ and $(\Phi')^{-1}(\{1\})$ devise a finite automaton that recognises the language.

Exercise 13

For a language $L \subseteq \Sigma^*$, we use \overline{L} to denote the complement language of L, i.e. $\overline{L} := \Sigma^* \setminus L$. Let Σ be an alphabet, $L \subseteq \Sigma^*$ a language and $(M, \circ, 1)$ a monoid. Prove that if L is accepted by $(M, \circ, 1)$, then \overline{L} is also accepted by $(M, \circ, 1)$.

Exercise 14

Determine the syntactic monoid of the language described by a^*ba^* .

Exercise 15

Let $L \subseteq \Sigma^*$, and \approx be an equivalence relation on Σ^* . Consider the following property:

For all
$$u, v \in \Sigma^*$$
, if $u \in L$ and $u \approx v$, then $v \in L$. (*)

- a) The proof of Corollary 1.13 from the lecture depends on the fact that the syntactical congruence \sim_L has property (*). Prove this.
- b) Show that \sim_L is the coarsest congruence relation with property (*).
- c) Show that the Nerode right congruence ρ_L is the coarsest right congruence with property (*).

Note: An equivalence relation \approx_2 is *coarser* than \approx_1 if for every $x, y, x \approx_1 y$ implies $x \approx_2 y$. (In particular, \approx_2 has at most as many equivalence classes as \approx_1 .)

Exercise 16

Show that any submonoid of a finite group is also a group.

Exercise 17

Let V be an M-variety. Show that $L(V)_{\Sigma}$ is closed under union *without* using Thm. 1.22 from the lecture.

Exercise 18

Let Σ be an alphabet. Prove or refute the following claims:

- a) Every regular language $L \subseteq \Sigma^*$ is accepted by its syntactic monoid.
- b) If $L \subseteq \Sigma^*$ is accepted by a finite group, then the syntactic monoid of L is a finite group.
- c) For every regular language $L \subseteq \Sigma^*$, the syntactic monoid M_L is the smallest monoid accepting *L*; i.e. for every monoid *M* accepting *L*, we have $|M_L| \leq |M|$.
- d) For a word $w = a_1 \dots a_n$, let \overleftarrow{w} denote the mirror image of w, i.e. $\overleftarrow{w} = a_n \dots a_1$. For a language $L \subseteq \Sigma^*$, we define $\overleftarrow{L} := {\overleftarrow{w} \mid w \in L}$. **Claim:** If the minimal automaton for L has n states, then the minimal automaton for \overleftarrow{L} has also n states.