

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Automata and Logic

Exercise Sheet 4

Dr. rer. nat. Rafael Peñaloza Summer Semester 2013

Exercise 19

Let V be the M-variety of all commutative finite groups. Show that there exists a language $L \subseteq \{a\}^*$ such that $L \in L(V)_{\{a\}}$ but $L \notin L(V)_{\{a,b\}}$.

Exercise 20

Prove or refute the following: There is a language $L \subseteq \{a, b\}^*$ such that its syntactic semigroup S_L and its syntactic monoid M_L are isomorphic.

Exercise 21

For each of the following words over the alphabet $\{0, 1\}^k$, give a corresponding interpretation over the predicate symbols P_1, \ldots, P_k as discussed in the lecture:

$$k = 2: (1, 1), (1, 1), (0, 1), (1, 0)$$

$$k = 3: (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)$$

$$k = 3: (1, 1, 0), (1, 0, 1), (1, 1, 1), (1, 1, 0)$$

Describe all interpretations that correspond to words of the language $L(((0, 1) \cdot (1, 0))^+) \subseteq (\{0, 1\}^2)^+$.

Exercise 22

Let $\Sigma = \{a, b\}$. For each of the following regular expressions r_i , give a first-order formula ϕ_i such that $L(r_i) = L(\phi_i)$.

a)
$$r_1 = \Sigma^*$$
,

b)
$$r_2 = \varepsilon_1$$

c)
$$r_3 = (abb^*)^*$$
,

- d) $r_4 = a^* b^* + b^* a^*$, and
- e) $r_5 = (aaa \cdot \Sigma^*) + b^*$.

Exercise 23

Complete the proof of Lemma 2.2 from the lecture by showing that the class $(B_0)_{\Sigma}$ is closed under union.

Exercise 24

Let (S, \circ) be a finite semigroup, $m \in S$, and $i, k, \ell \in \mathbb{N} \setminus \{0\}$ defined as in the proof of Thm. 2.4. Show that if k is minimal with the property described in the proof, then

$$(\{m^{i}, ..., m^{i+k-1}\}, \circ, m^{\ell})$$

is a group. Is $(\{m^i, ..., m^{i+k-1}\}, \circ, m^{\ell})$ still a group if k is not minimal?

Exercise 25

Let $\Sigma := \{a, b\}$ and L_1, L_2 be the languages accepted by the automata displayed below. Use the proof of Cor. 2.10 from the lecture to show that $L_1 \notin (B_0)_{\Sigma}$ and $L_2 \in (B_0)_{\Sigma}$.

Moreover, represent L_2 as a Boolean combination of languages from the set

$$\{u\Sigma^* \mid u \in \Sigma^*\} \cup \{\Sigma^*u \mid u \in \Sigma^*\}.$$

Exercise 26

Prove or refute the following:

- a) For every alphabet Σ and word $w \in \Sigma^*$, we have $\{w\} \in (B_0)_{\Sigma}$.
- b) For every two alphabets Σ and Σ' with $\Sigma \subseteq \Sigma'$, and every language $L \subseteq \Sigma^*$, we have: if $L \in (B_0)_{\Sigma}$, then $L \in (B_0)_{\Sigma'}$.
- c) Let $(M, \circ, 1)$ be a monoid, where 1 is the only idempotent element of M. Then $(M, \circ, 1)$ is a group.
- d) Let (S, \circ) be a semigroup with $e \in S$ being idempotent. Then (eSe, \circ, e) is the largest submonoid of S with e as unit element.
- e) Let $(S, \circ) \in \widehat{\mathbb{D}}$. If there exists an element $s \in S$ such that (S, \circ, s) is a monoid, then |S| = 1.