Automata and Logic

Exercise Sheet 7
Dr. rer. nat. Rafael Peñaloza
Summer Semester 2013

Exercise 37
Let \(\Sigma = \{a, b\} \), and \(L \subseteq \Sigma^* \) be defined by the regular expression \((a^*bb^*)^* \). Show that
\[
\lim L = \{ \alpha \in \Sigma^\omega \mid \text{if } \alpha(i, i) = a, \text{ then there is a } j > i \text{ with } \alpha(j, j) = b \}.
\]

Exercise 38
Give Büchi automata that recognise the following \(\omega \)-regular languages over the alphabet \(\Sigma := \{a, b, c\} \):

a) \(L_1 := \{ \alpha \in \Sigma^\omega \mid \exists i \in \mathbb{N} : \alpha(i, i + 2) = abc \} \);
b) \(L_2 := \{ \alpha \in \Sigma^\omega \mid \{ i \in \mathbb{N} \mid \alpha(i, i + 2) = abc \} \text{ is infinite} \} \); and

Exercise 39
a) Show that the construction used in the proof of Lemma 4.7.1 does not work for automata whose initial state is reachable from another state.
b) Complete the proof of Lemma 4.7 from the lecture by showing the following:

If \(L_1, L_2 \subseteq \Sigma^\omega \) are Büchi recognisable, then \(L_1 \cup L_2 \) is Büchi recognisable.

Exercise 40
Let \(\Sigma \) be an alphabet, and \(L, L_1, L_2 \subseteq \Sigma^* \). Prove or refute:

a) \((L_1 \cup L_2)^\omega \subseteq L_1^\omega \cup L_2^\omega \)
\((L_1 \cup L_2)^\omega \supseteq L_1^\omega \cup L_2^\omega \)
b) \(\lim(L_1 \cup L_2) \subseteq \lim L_1 \cup \lim L_2 \)
\(\lim(L_1 \cup L_2) \supseteq \lim L_1 \cup \lim L_2 \)
c) \(L^\omega \subseteq \lim L^+ \)
\(L^\omega \supseteq \lim L^+ \)
Exercise 41

Let $\Sigma = \{a, b\}$, and $L \subseteq \Sigma^\omega$ be the ω-language recognised by the following Büchi automaton:

Find a number $n \geq 1$ and regular languages $U_1, V_1, \ldots, U_n, V_n \subseteq \Sigma^*$ such that

$$\bigcup_{i=1}^{n} U_i \cdot V_i^\omega = L.$$