

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Automata and Logic

Exercise Sheet 8

Dr. rer. nat. Rafael Peñaloza Summer Semester 2013

Exercise 42

Let Σ be an alphabet. Prove the following:

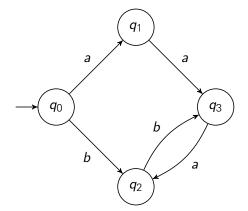
- a) If $L \subseteq \Sigma^+$ is regular, then there exists a non-deterministic finite automaton \mathcal{A} with only *one* final state such that $L = L(\mathcal{A})$.
- b) If $L \subseteq \Sigma^*$ is regular, then there exists a non-deterministic finite automaton \mathcal{A} with at most *two* final states such that $L = L(\mathcal{A})$.
- c) There is $no k \ge 1$ such that the following holds:

If $L \subseteq \Sigma^{\omega}$ is Büchi recognisable, then there exists a Büchi automaton \mathcal{A} with at most k final states such that $L = L_{\omega}(\mathcal{A})$.

Hint: Consider the languages $a^{\omega} \cup b^{\omega}$, $a^{\omega} \cup b^{\omega} \cup c^{\omega}$,

Exercise 43

Consider Büchi automata using the following transition system:



Check whether the recognised ω -language is empty for the following sets of final states:

- a) $F = \{q_0, q_1\}$
- b) $F = \{q_2, q_3\}$
- c) $F = \{q_1, q_3\}$

Exercise 44

For a finite automaton A, let A_{det} denote the minimal deterministic finite automaton such that $L(A) = L(A_{det})$. Prove or refute the following:

- a) lim $L(\mathcal{A}) = L_{\omega}(\mathcal{A}_{det})$
- b) $L_{\omega}(\mathcal{A})\subseteq L_{\omega}(\mathcal{A}_{\mathsf{det}})$
- c) $L_{\omega}(\mathcal{A}_{\mathsf{det}}) \subseteq L_{\omega}(\mathcal{A})$

Exercise 45

Let $(r_n)_{n\geq 0}$ be a sequence of real numbers. Show that there exists an infinite sub-sequence of $(r_n)_{n\geq 0}$ that is

- strictly increasing, or
- strictly decreasing, or
- constant.