Automata and Logic

Exercise Sheet 10
Dr. rer. nat. Rafael Peñaloza
Summer Semester 2013

Exercise 49
For each of the following languages L_i, give an S1S-formula ϕ_i such that $L_\omega(\phi_i) = L_i$:

a) $L_1 = (abb^*)^\omega$,
b) $L_2 = ((aa)^+(bb)^+)^\omega$, and
c) $L_3 = (aaa)^+ b(a \cup b)^\omega$.

Exercise 50
Transform the S1S-formula $P(\emptyset)$ into an equivalent S1S$_0$-formula.

Exercise 51
Let $L := (a^+ b)^\omega \cup (b^+ a)^\omega$. Use the proof of Thm. 5.4 to construct a closed S1S-formula ϕ with $L_\omega(\phi) = L$.

Exercise 52
A Rabin automaton is a tuple $\mathcal{A} := (Q, \Sigma, I, \Delta, \Omega)$ where Q, Σ, I, and Δ are defined as for non-deterministic Büchi automata, and $\Omega := \{(F_1, G_1), \ldots, (F_n, G_n)\}$ is a finite set of pairs (F_i, G_i) such that $F_i, G_i \subseteq Q$. For a word α, let $\text{path}_\mathcal{A}(\alpha)$ denote the set of all paths in \mathcal{A} labelled with α. For a path $p \in \text{path}_\mathcal{A}(\alpha)$, let $\text{inf}(p)$ denote the set of all states that are visited infinitely often. The ω-language $L_\omega(\mathcal{A})$ recognised by a Rabin automaton is defined as

$$L_\omega(\mathcal{A}) := \{\alpha \in \Sigma^\omega \mid \exists i \in \{1, \ldots, n\} \exists p \in \text{path}_\mathcal{A}(\alpha) : \text{inf}(p) \cap F_i \neq \emptyset \land \text{inf}(p) \cap G_i = \emptyset\}.$$

Show that every language recognised by a Rabin automaton is also recognised by a Büchi automaton by constructing for a given Rabin automaton \mathcal{A}, an S1S-formula $\phi_\mathcal{A}$ defining the language $L_\omega(\mathcal{A})$.

Exercise 53
Let $\Sigma = \Sigma_0 \cup \Sigma_1 \cup \Sigma_2$ be an alphabet with arity function, where $\Sigma_0 = \{x, y, z\}$, $\Sigma_1 = \{-\}$, and $\Sigma_2 = \{\land, \lor\}$. Define tree automata (either LR or RL) recognising the tree languages consisting of the following trees:

a) trees containing the symbol \lor exactly once;
b) trees containing the symbol \neg at least once on every path of the tree; and
c) trees describing *satisfiable* propositional formulae.

Exercise 54

Let $\mathcal{A} = (Q, \Sigma, I, \Delta, F)$ be the non-deterministic LR-tree automaton given by:

- $Q = \{0, 1\}$;
- $\Sigma = \{f, x, y\}$ with $\nu(f) = 2$ and $\nu(x) = \nu(y) = 0$;
- $I(x) = \{0, 1\}$ and $I(y) = \{0\}$;
- $\Delta_r(0, 0) = \{0\}, \Delta_r(0, 1) = \{1, 0\}, \Delta_r(1, 0) = \{1, 0\}$, and $\Delta_r(1, 1) = \{1\}$; and
- $F = \{1\}$.

Do the following:

a) Adapt the standard powerset construction from finite automata on words to LR-tree automata and use it to construct a deterministic LR-tree automaton \mathcal{A}' such that $L(\mathcal{A}) = L(\mathcal{A}')$.

b) Try to apply a similar construction to the RL-tree automaton from Example 6.10 from the lecture. Explain why this method fails for RL-tree automata.