Exercise 1

Recall that the description logic \mathcal{ALC} is equipped with the concept constructors negation (\neg), conjunction (\sqcap), disjunction (\sqcup), existential restriction ($\exists r.C$), and universal restriction ($\forall r.C$). Each subset of this set of constructors gives rise to a fragment of \mathcal{ALC}.

Identify all minimal fragments that are equivalent to \mathcal{ALC} in the sense that for every \mathcal{ALC}-concept, there is an equivalent concept in the fragment.

Two concepts are equivalent iff the concepts have the same extension in every interpretation.

Exercise 2

Consider the (graphical representation of the) interpretation \mathcal{I} with $\Delta^\mathcal{I} = \{d, e, f, g\}$:

For each of the following \mathcal{ALC}-concepts C, list all elements x of $\Delta^\mathcal{I}$ such that $x \in C^\mathcal{I}$:

a) $A \sqcup B$

b) $\exists s. \neg A$

c) $\forall s. A$

d) $\exists s. \exists s. \exists s. A$

e) $\neg \exists r. (\neg A \sqcap \neg B)$

f) $\exists s. (A \sqcap \forall s. \neg B) \sqcap \neg \forall r. \exists r. (A \sqcup \neg A)$
Exercise 3
In addition to the concept assertions presented in the lecture, ABoxes are sometimes allowed to contain role assertions of the form \(r(a, b) \). An interpretation \(I \) respects the role assertion \(r(a, b) \) iff \((a^I, b^I) \in r^I \). \(I \) is a model of the ABox \(\mathcal{A} \) iff it respects all concept assertions and all role assertions from \(\mathcal{A} \).

We say that the individual \(a \) is an instance of the concept \(C \) with respect to \(\mathcal{A} \) iff \(a^I \in C^I \) holds for all models \(I \) of \(\mathcal{A} \).

Consider the ABox
\[
\mathcal{A} = \{ A(d), A(e), A(f), B(f), r(d, e), r(e, g), s(e, f), s(g, g), s(g, d) \}
\]

a) Present a graphical representation of the ABox.
b) For each of the \(\mathcal{ALC} \)-concepts \(C \) from Exercise 2, list all individuals that are instances of \(C \) w.r.t. \(\mathcal{A} \).
c) Compare your results to Exercise 2. Explain the differences.

Exercise 4
Consider the TBox
\[
\mathcal{T} = \{ \neg(A \sqcup B) \subseteq \bot, \ A \sqsubseteq \neg B \sqcap \exists r.B, \ D \sqsubseteq \forall r.A, \ B \sqsubseteq \neg A \sqcap \exists r.A \},
\]
the ABox
\[
\mathcal{A} = \{ r(a, b), \ r(a, c), \ r(a, d), \ r(d, c), \ (B \sqcap \forall r.D)(a), \ E(b), \ (\neg A)(c), \ (\exists s.\neg D)(d) \}
\]
and the ontology \(\mathcal{O} = (\mathcal{T}, \mathcal{A}) \). Check for
a) the TBox \(\mathcal{T} \)
b) the ABox \(\mathcal{A} \) and
c) the knowledge base \(\mathcal{O} \)
whether it has a model. If it has one, specify such a model. If it does not have a model, explain why.